Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 57(9): 1611-1624, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949610

RESUMO

Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.


Assuntos
Neuroproteção , Doença de Parkinson , Humanos , Camundongos , Animais , Perna (Membro) , Projetos Piloto , Doença de Parkinson/terapia , Abdome
2.
J Neurol Neurosurg Psychiatry ; 91(12): 1349-1356, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33033168

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a major cause of disability in western country and responsible for severe impairment of quality of life. About 10% of patients present with severe OCD symptoms and require innovative treatment such as deep brain stimulation (DBS). Among possible targets, the non-motor subthalamic nucleus (STN) is a key node of the basal ganglia circuitry, strongly connected to limbic cortical areas known to be involved in OCD. METHOD: We analysed, in a prospective, observational, monocentric, open label cohort, the effect of chronic non-motor STN-DBS in 19 patients with treatment-resistant OCD consecutively operated in a single centre. Severity of OCD was evaluated using the Yale and Brown Obsessive-Compulsive Scale (YBOCS). YBOCS scores at 6, 12 and 24 months postoperatively were compared with baseline. Responders were defined by >35% improvement of YBOCS scores. Global Assessment Functioning (GAF) scale was used to evaluate the impact of improvement. RESULTS: At a 24-month follow-up, the mean YBOCS score improved by 53.4% from 33.3±3.5 to 15.8±9.1 (95% CI 11.2-20.4; p<0.0001). Fourteen out of 19 patients were considered as responders, 5 out of 19 being improved over 75% and 10 out of 19 over 50%. GAF scale improved by 92% from 34.1±3.9 to 66.4±18.8 (95% CI 56.7-76.1; p=0.0003). The most frequent adverse events consisted of transient DBS-induced hypomania and anxiety. CONCLUSION: Chronic DBS of the non-motor STN is an effective and relatively safe procedure to treat severe OCD resistant to conventional management.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtorno Obsessivo-Compulsivo/terapia , Núcleo Subtalâmico , Adulto , Ansiedade/etiologia , Estudos de Coortes , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Mania/etiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Sensors (Basel) ; 20(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397472

RESUMO

Brain source imaging and time frequency mapping (TFM) are commonly used in magneto/electro encephalography (M/EEG) imaging. However, these methods suffer from important limitations. Source imaging is based on an ill-posed inverse problem leading to instability of source localization solutions, has a limited capacity to localize high frequency oscillations and loses its robustness for induced responses (ill-defined trigger). The drawback of TFM is that it involves independent analysis of signals from a number of frequency bands, and from co-localized sensors. In the present article, a regression-based multi-sensor space-time-frequency analysis (MSA) approach, which integrates co-localized sensors and/or multi-frequency information, is proposed. To estimate task-specific brain activations, MSA uses cross-validated, shifted, multiple Pearson correlation, calculated from the time-frequency transformed brain signal and the binary signal of stimuli. The results are projected from the sensor space onto the cortical surface. To assess MSA performance, the proposed method was compared to the weighted minimum norm estimate (wMNE) source imaging method, in terms of spatial selectivity and robustness against an ill-defined trigger. Magnetoencephalography (MEG) recordings were performed in fourteen subjects during two motor tasks: finger tapping and elbow flexion/extension. In particular, our results show that the MSA approach provides good localization performance when compared to wMNE and statistically significant improvement of robustness against ill-defined trigger.


Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Córtex Motor , Eletroencefalografia , Humanos , Análise Espaço-Temporal
4.
Eur Radiol ; 28(2): 894-895, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030695

RESUMO

The original version of this article, published on 12 July 2017, unfortunately contained mistakes. The following corrections have therefore been made in the original.

5.
Eur Radiol ; 28(2): 886-893, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28702799

RESUMO

OBJECTIVE: To assess the feasibility of greater occipital nerve (GON) intermediate site infiltration with MRI guidance. METHODS: Eleven consecutive patients suffering from chronic refractory cranio-facial pain who underwent 16 GON infiltrations were included in this prospective study. All of the procedures were performed on an outpatient basis in the research facility of our institution, with a 1.5 T scanner. The fatty space between inferior obliquus and semispinalis muscles at C1-C2 level was defined as the target. Technical success was defined as the ability to accurately inject the products at the target, assessed by post-procedure axial and sagittal proton density-weighted sequences. Clinical success was defined as a 50% pain decrease at 1 month. RESULTS: Technical success was 100%. GON was depicted in 6/11 cases on planning MRI sequences. Mean duration of procedure was 22.5 min (range 16-41). Clinical success was obtained in 7/11 included patients (63.6%) with a mean self-reported improvement of 78%. CONCLUSION: Interventional MR-guidance for GON infiltration is a feasible technique offering similar results to an already established effective procedure. It may appear as a useful tool in specific populations, such as young patients and repeat infiltrations, and should be considered in these settings. KEY POINTS: • MR guidance for GON infiltration is a feasible technique. • Preliminary results are in agreement with other guidance modalities. • MR guidance may be seen as a useful tool in specific populations. • Specific populations include young patients and repeat infiltrations. • Target patients may also include patients with potentionally previously reported complications (torticollis).


Assuntos
Imageamento por Ressonância Magnética , Bloqueio Nervoso/métodos , Neuralgia/terapia , Nervos Espinhais/diagnóstico por imagem , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
Exp Brain Res ; 236(4): 955-961, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29379995

RESUMO

In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry. Our results revealed two populations of striatal interneurones that expressed encephalopsin, one of which was the giant, choline acetyltransferase-containing, cholinergic interneurones. The other population had smaller somata and was not cholinergic. Neither cell group expressed the calcium-binding protein, parvalbumin. There was also rich encephalopsin expression in a set of terminals forming striosome-like patches across the striatum. Finally, we found that neither parkinsonian (MPTP) insult nor photobiomodulation had any effect on encephalopsin expression in the striatum. In summary, our results revealed an extensive network of encephalopsin containing structures throughout the striatum, indicating that external light is in a position to influence a range of striatal activities at both the interneurone and striosome level.


Assuntos
Corpo Estriado/metabolismo , Interneurônios/metabolismo , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Imuno-Histoquímica , Intoxicação por MPTP/terapia , Macaca fascicularis
7.
Neuromodulation ; 21(2): 149-159, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28685918

RESUMO

BACKGROUND: Brain Computer Interface (BCI) studies are performed in an increasing number of applications. Questions are raised about electrodes, data processing and effectors. Experiments are needed to solve these issues. OBJECTIVE: To develop a simple BCI set-up to easier studies for improving the mathematical tools to process the ECoG to control an effector. METHOD: We designed a simple BCI using transcranial electrodes (17 screws, three mechanically linked to create a common reference, 14 used as recording electrodes) to record Electro-Cortico-Graphic (ECoG) neuronal activities in rodents. The data processing is based on an online self-paced non-supervised (asynchronous) BCI paradigm. N-way partial least squares algorithm together with Continuous Wavelet Transformation of ECoG recordings detect signatures related to motor activities. Signature detection in freely moving rats may activate external effectors during a behavioral task, which involved pushing a lever to obtain a reward. RESULTS: After routine training, we showed that peak brain activity preceding a lever push (LP) to obtain food reward was located mostly in the cerebellar cortex with a higher correlation coefficient, suggesting a strong postural component and also in the occipital cerebral cortex. Analysis of brain activities provided a stable signature in the high gamma band (∼180Hz) occurring within 1500 msec before the lever push approximately around -400 msec to -500 msec. Detection of the signature from a single cerebellar cortical electrode triggers the effector with high efficiency (68% Offline and 30% Online) and rare false positives per minute in sessions about 30 minutes and up to one hour (∼2 online and offline). CONCLUSIONS: In summary, our results are original as compared to the rest of the literature, which involves rarely rodents, a simple BCI set-up has been developed in rats, the data show for the first time long-term, up to one year, unsupervised online control of an effector.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Vigília/fisiologia , Algoritmos , Animais , Mapeamento Encefálico , Eletrodos Implantados , Eletroencefalografia , Feminino , Estudos Longitudinais , Sistemas On-Line , Estimulação Física , Desempenho Psicomotor/fisiologia , Ratos , Fatores de Tempo , Interface Usuário-Computador
8.
Ann Neurol ; 79(1): 59-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456231

RESUMO

OBJECTIVE: To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS: We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.5-2.1mg/kg) were made over a 5- to 7-day period, during which time the NIr device was turned on. This was then followed by a 3-week survival period. Monkeys were evaluated clinically (eg, posture, bradykinesia) and behaviorally (open field test), and their brains were processed for immunohistochemistry and stereology. RESULTS: All monkeys in the MPTP group developed severe clinical and behavioral impairment (mean clinical scores = 21-34; n = 11). By contrast, the MPTP-NIr group developed much less clinical and behavioral impairment (n = 9); some monkeys developed moderate clinical signs (mean scores = 11-15; n = 3), whereas the majority--quite remarkably--developed few clinical signs (mean scores = 1-6; n = 6). The monkeys that developed moderate clinical signs had hematic fluid in their optical fibers at postmortem, presumably limiting NIr exposure and overall clinical improvement. NIr was not toxic to brain tissue and offered neuroprotection to dopaminergic cells and their terminations against MPTP insult, particularly in animals that developed few clinical signs. INTERPRETATION: Our findings indicate NIr to be an effective therapeutic agent in a primate model of the disease and create the template for translation into clinical trials.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/prevenção & controle , Mesencéfalo/efeitos da radiação , Neurotoxinas/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/fisiopatologia , Macaca fascicularis , Masculino , Mesencéfalo/efeitos dos fármacos , Neurotoxinas/administração & dosagem , Fibras Ópticas
9.
J Neurol Neurosurg Psychiatry ; 88(11): 960-967, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28972096

RESUMO

BACKGROUND: Pallidal deep brain stimulation (globus pallidus internus (GPi) DBS) is the best therapeutic option for disabling isolated idiopathic (IID) and inherited (INH) dystonia. Acquired dystonia (AD) may also benefit from GPi DBS. Efficacy and safety in the long-term remained to be established. OBJECTIVE: To retrospectively assess long-term clinical outcomes and safety in dystonic patients who underwent GPi DBS. METHODS: Patients were videotaped and assessed preoperatively and postoperatively (1-year and at last available follow-up) using the Burke-Fahn-Marsden Dystonia Rating Scale (motor score (BFMDRS-M); disability score (BFMDRS-D)). RESULTS: Sixty-one patients were included (follow-up 7.9±5.9 years; range 1-20.7). In IID and INH (n=37), the BFMDRS-M improved at first (20.4±24.5; p<0.00001) and last (22.2±18.2; p<0.001) follow-ups compared with preoperatively (50.5±28.0). In AD (n=19), the BFMDRS-M ameliorated at 1-year (40.8±26.5; p<0.02) and late follow-ups (44.3±24.3; p<0.04) compared with preoperatively (52.8±24.2). In INH dystonia with other neurological features (n=4) there was no motor benefit. In IID and INH, the BFMDRS-D improved at 1-year (9.5±7.5; p<0.0002) and late follow-ups (10.4±7.8; p<0.016) compared with preoperatively (13.3±6.9). In AD, the BFMDRS-D reduced at 1-year (12.0±8.1; p<0.01) and late follow-ups (12.7 ±6.1; p=0.2) compared with preoperatively (14.35±5.7). Most adverse events were hardware related. CONCLUSIONS: GPi DBS is an effective and safe treatment in most patients with dystonia.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos/terapia , Globo Pálido/fisiopatologia , Adulto , Distúrbios Distônicos/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
10.
Exp Brain Res ; 235(10): 3081-3092, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744621

RESUMO

In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry. In general, our results showed that longer term intracranial application of photobiomodulation had no adverse effects on the surrounding brain parenchyma or on the nearby dopaminergic cell system. We found no evidence for photobiomodulation generating an inflammatory glial response or neuronal degeneration near the implant site; further, photobiomodulation did not induce an abnormal activation or mitochondrial stress in nearby cells, nor did it cause an abnormal arrangement of the surrounding vasculature (endothelial basement membrane). Finally, because of our interest in Parkinson's disease, we noted that photobiomodulation had no impact on the number of midbrain dopaminergic cells and the density of their terminations in the striatum. In summary, we found no histological basis for any major biosafety concerns associated with photobiomodulation delivered by our intracranial approach and our findings set a key template for progress onto clinical trial on patients with Parkinson's disease.


Assuntos
Corpo Estriado , Neurônios Dopaminérgicos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Mesencéfalo , Fibras Ópticas/efeitos adversos , Próteses e Implantes/efeitos adversos , Animais , Terapia com Luz de Baixa Intensidade/instrumentação , Macaca fascicularis
11.
Exp Brain Res ; 235(6): 1861-1874, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299414

RESUMO

Intracranial application of red to infrared light, known also as photobiomodulation (PBM), has been shown to improve locomotor activity and to neuroprotect midbrain dopaminergic cells in rodent and monkey models of Parkinson's disease. In this study, we explored whether PBM has any influence on the number of tyrosine hydroxylase (TH)+cells and the expression of GDNF (glial-derived neurotrophic factor) in the striatum. Striatal sections of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice and monkeys and 6-hydroxydopamine (6OHDA)-lesioned rats that had PBM optical fibres implanted intracranially (or not) were processed for immunohistochemistry (all species) or western blot analysis (monkeys). In our MPTP monkey model, which showed a clear loss in striatal dopaminergic terminations, PBM generated a striking increase in striatal TH+ cell number, 60% higher compared to MPTP monkeys not treated with PBM and 80% higher than controls. This increase was not evident in our MPTP mouse and 6OHDA rat models, both of which showed minimal loss in striatal terminations. In monkeys, the increase in striatal TH+ cell number in MPTP-PBM cases was accompanied by similar increases in GDNF expression, as determined from western blots, from MPTP and control cases. In summary, these results offer insights into the mechanisms by which PBM generates its beneficial effects, potentially with the use of trophic factors, such as GDNF.


Assuntos
Núcleo Caudado/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Putamen/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Contagem de Células , Modelos Animais de Doenças , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 18(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053638

RESUMO

Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson's disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies involving invasive surgical approaches (NSI) using neurotoxic models 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which have led to clinical trials. We focus on several NSI approaches, namely deep brain stimulation of the subthalamic nucleus, glial neurotrophic derived factor (GDNF) administration and cell grafting methods. Although most of these interventions have produced positive results in preclinical animal models, either from behavioral or histological studies, they have generally failed to pass randomized clinical trials to validate each approach. We argue that NSI are promising approaches for neurorestoration in PD, but preclinical studies should be planned carefully in order not only to detect benefits but also to detect potential adverse effects. Further, clinical trials should be designed to be able to detect and disentangle neuroprotection from symptomatic effects. In summary, our review study evaluates the pertinence of preclinical models to study NSI for PD and how this affects their efficacy when translated into clinical trials.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Estimulação Encefálica Profunda/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Doença de Parkinson/prevenção & controle , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Neuroproteção , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Resultado do Tratamento
13.
Exp Brain Res ; 234(7): 1787-1794, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26879772

RESUMO

We have shown previously that near-infrared light (NIr), when applied at the same time as a parkinsonian insult (e.g. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP), reduces behavioural deficits and offers neuroprotection. Here, we explored whether the timing of NIr intervention-either before, at the same time or after the MPTP insult-was important. Mice received MPTP injections (total of 50 mg/kg) and, at various stages in relation to these injections, extracranial application of NIr. Locomotor activity was tested with an open-field test, and brains were processed for immunohistochemistry. Our results showed that regardless of when NIr was applied in relation to MPTP insult, behavioural impairment was reduced by a similar magnitude. The beneficial effect of NIr was fast-acting (within minutes) and long-lasting (for several days). There were more dopaminergic cells in the NIr-treated MPTP groups than in the MPTP group; there was no clear indication that a particular combination of NIr treatment and MPTP injection resulted in a higher cell number. In summary, irrespective of whether it was applied before, at the same time as or after MPTP insult, NIr reduced both behavioural and structural measures of damage by a similar magnitude. There was a broad therapeutic time window of NIr application in relation to the stage of toxic insult, and the NIr was fast-acting and long-lasting.


Assuntos
Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/terapia , Atividade Motora/efeitos da radiação , Fototerapia/métodos , Animais , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
14.
Exp Brain Res ; 234(11): 3225-3232, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27377070

RESUMO

We have reported previously that intracranial application of near-infrared light (NIr) reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether NIr reduces the gliosis in this animal model. Sections of midbrain (containing the substantia nigra pars compacta; SNc) and striatum were processed for glial fibrillary acidic protein (to label astrocytes; GFAP) and ionised calcium-binding adaptor molecule 1 (to label microglia; IBA1) immunohistochemistry. Cell counts were undertaken using stereology, and cell body sizes were measured using ImageJ. Our results showed that NIr treatment reduced dramatically (~75 %) MPTP-induced astrogliosis in both the SNc and striatum. Among microglia, however, NIr had a more limited impact in both nuclei; although there was a reduction in overall cell size, there were no changes in the number of microglia in the MPTP-treated monkeys after NIr treatment. In summary, we showed that NIr treatment influenced the glial response, particularly that of the astrocytes, in our monkey MPTP model of Parkinson's disease. Our findings raise the possibility of glial cells as a future therapeutic target using NIr.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Gliose/etiologia , Gliose/terapia , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/complicações , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/patologia , Macaca fascicularis , Masculino , Proteínas dos Microfilamentos , Neuroglia/efeitos dos fármacos , Neuroglia/efeitos da radiação , Neurotoxinas/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
16.
Int J Neurosci ; 126(1): 76-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25469453

RESUMO

We have used the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model to explore whether (i) the neuroprotective effect of near infrared light (NIr) treatment in the SNc is dose-dependent and (ii) the relationship between tyrosine hydroxylase (TH)+ terminal density and glial cells in the caudate-putamen complex (CPu). Mice received MPTP injections (50 mg/kg) and 2 J/cm2 NIr dose with either 2 d or 7 d survival period. In another series, with a longer 14 d survival period, mice had a stronger MPTP regime (100 mg/kg) and either 2 J/cm2 or 4 J/cm2 NIr dose. Brains were processed for routine immunohistochemistry and cell counts were made using stereology. Our findings were that in the 2 d series, no change in SNc TH+ cell number was evident after any treatment. In the 7 d series however, MPTP insult resulted in ∼45% reduction in TH+ cell number; after NIr (2 J/cm2) treatment, many cells were protected from the toxic insult. In the 14 d series, MPTP induced a similar reduction in TH+ cell number. NIr mitigated the loss of TH+ cells, but only at the higher dose of 4 J/cm2; the lower dose of 2 J/cm2 had no neuroprotective effect in this series. The higher dose of NIr, unlike the lower dose, also mitigated the MPTP- induced increase in CPu astrocytes after 14 d; these changes were independent of TH+ terminal density, of which, did not vary across the different experimental groups. In summary, we showed that neuroprotection by NIr irradiation in MPTP-treated mice was dose-dependent; with increasing MPTP toxicity, higher doses of NIr were required to protect cells and reduce astrogliosis.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Gliose/radioterapia , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/radioterapia , Transtornos Parkinsonianos/radioterapia , Parte Compacta da Substância Negra/efeitos da radiação , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Astrócitos/patologia , Astrócitos/efeitos da radiação , Núcleo Caudado/patologia , Núcleo Caudado/efeitos da radiação , Contagem de Células , Sobrevivência Celular/efeitos da radiação , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Gliose/patologia , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/análise , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Putamen/patologia , Putamen/efeitos da radiação , Tirosina 3-Mono-Oxigenase/análise
17.
BMC Neurosci ; 14: 40, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23531041

RESUMO

BACKGROUND: We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson's disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. RESULTS: Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH⁺ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH⁺ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. CONCLUSIONS: In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr through skin and fur, provides a clearer model of protection than the C57BL/6 strain.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Raios Infravermelhos , Intoxicação por MPTP/patologia , Intoxicação por MPTP/terapia , Mesencéfalo/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Comportamento Exploratório/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos da radiação , Neurotoxinas/toxicidade , Especificidade da Espécie , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Brain ; 135(Pt 5): 1463-77, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22508959

RESUMO

Addictions to dopaminergic drugs or to pleasant behaviours are frequent and potentially devastating neuropsychiatric disorders observed in Parkinson's disease. They encompass impulse control disorders, punding and dopamine dysregulation syndrome. A relationship with dopaminergic treatment is strongly suggested. Subthalamic stimulation improves motor complications and allows for drastic reductions in medication. This treatment might, therefore, be considered for patients with behavioural addictions, when attempts to reduce dopaminergic medication have failed. However, conflicting data have reported suppression, alleviation, worsening or new onset of behavioural addictions after subthalamic stimulation. Non-motor fluctuations are also a disabling feature of the disease. We prospectively investigated behaviour in a cohort of 63 patients with Parkinson's disease, before and 1 year after subthalamic stimulation using the Ardouin scale, with systematic evaluation of functioning in overall appetitive or apathetic modes, non-motor fluctuations, dopaminergic dysregulation syndrome, as well as behavioural addictions (including impulse control disorders and punding) and compulsive use of dopaminergic medication. Defined drug management included immediate postoperative discontinuation of dopamine agonists and reduction in levodopa. Motor and cognitive statuses were controlled (Unified Parkinson's Disease Rating Scale, Mattis Dementia Rating Scale, frontal score). After surgery, the OFF medication motor score improved (-45.2%), allowing for a 73% reduction in dopaminergic treatment, while overall cognitive evaluation was unchanged. Preoperative dopamine dysregulation syndrome had disappeared in 4/4, behavioural addictions in 17/17 and compulsive dopaminergic medication use in 9/9 patients. New onset of levodopa abuse occurred in one patient with surgical failure. Non-motor fluctuations were significantly reduced with improvements in off-dysphoria (P ≤ 0.001) and reduction in on-euphoria (P ≤ 0.001). There was an inversion in the number of patients functioning in an overall appetitive mode (29 before versus 2 after surgery, P ≤ 0.0001) to an overall apathetic mode (3 before versus 13 after surgery, P < 0.05). Two patients attempted suicide. Improvement in motor fluctuations is linked to the direct effect of stimulation on the sensory-motor subthalamic territory, while improvement in dyskinesias is mainly explained by an indirect effect related to the decrease in dopaminergic drugs. Our data suggest that non-motor fluctuations could similarly be directly alleviated through stimulation of the non-motor subthalamic territories, and hyperdopaminergic side effects might improve mainly due to the decrease in dopaminergic medication. We show an overall improvement in neuropsychiatric symptomatology and propose that disabling non-motor fluctuations, dopaminergic treatment abuse and drug-induced behavioural addictions in Parkinson's disease may be considered as new indications for subthalamic stimulation.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos Disruptivos, de Controle do Impulso e da Conduta/terapia , Discinesia Induzida por Medicamentos/terapia , Motivação/fisiologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Antiparkinsonianos/efeitos adversos , Estudos de Coortes , Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Discinesia Induzida por Medicamentos/etiologia , Feminino , Humanos , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Motivação/efeitos dos fármacos , Testes Neuropsicológicos , Doença de Parkinson/complicações , Escalas de Graduação Psiquiátrica , Índice de Gravidade de Doença , Estatísticas não Paramétricas
19.
Neural Regen Res ; 18(11): 2343-2347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282451

RESUMO

Astrocytes are not only the most populous cell type in the human brain, but they also have the most extensive and diverse sets of connections, across synapses, axons, blood vessels, as well as having their own internal network. Unsurprisingly, they are associated with many brain functions; from the synaptic transmission to energy metabolism and fluid homeostasis, and from cerebral blood flow and blood-brain barrier maintenance to neuroprotection, memory, immune defenses and detoxification, sleep, and early development. And yet, notwithstanding these key roles, so many current therapeutic approaches to a range of brain disorders have largely neglected their potential involvement. In this review, we consider the role of astrocytes in three brain therapies; two are emerging treatments (photobiomodulation and ultrasound), while the other is well-established (deep brain stimulation). In essence, we explore the issue of whether external sources, such as light, sound, or electricity, can influence the function of astrocytes, as they do neurons. We find that, when taken all together, each of these external sources can influence many, if not, all of the functions associated with astrocytes. These include influencing neuronal activity, prompting neuroprotection, reducing inflammation (astrogliosis) and potentially increasing cerebral blood flow and stimulating the glymphatic system. We suggest that astrocytes, just like neurons, can respond positively to each of these external applications and that their activation could each impart many beneficial outcomes on brain function; they are likely to be key players underpinning the mechanisms behind many therapeutic strategies.

20.
Ann Neurol ; 80(2): 310-1, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262035
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA