Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 53(33): 13982-13995, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39101845

RESUMO

Hydrothermal conversion of actinide oxalates has recently gained attention as an innovative fabrication route for nuclear fuels but has remained mainly limited to tetra- or tri-valent cations. We report herein the reductive conversion of mixtures of uranyl and oxalate ions into UO2+x oxides under mild hydrothermal conditions (T = 250 °C). A multi-parametric study first led to specifying the optimal conditions in terms of pH, oxalate/U ratio and duration to provide a quantitative precipitation of uranium in the hyper-stoichiometric dioxide form with pH = 0.8; R = noxalate/nU = 3, and t = 72 hours. Particularly, pH was evidenced as a key parameter, with 3 different compounds obtained over a range of only 0.4 units. The mechanism leading to the formation of UO2+x was then investigated thanks to an in situ XANES study. Analysis of the supernatant showed that U(VI) was quickly reduced into U(IV) thanks to the presence of oxalates and/or their decomposition products in solution, following first-order kinetics. Tetravalent uranium was then hydrolysed, leading to the precipitation of UO2+x as the only crystalline phase. This study thus demonstrates that the hydrothermal conversion of actinide oxalates into oxides is an extremely versatile tool that can be implemented in a large variety of chemical systems, particularly in terms of the oxidation state of the cations initially present in solution.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122671, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031480

RESUMO

We evaluated the potential of time-resolved laser-induced fluorescence spectroscopy (TRLFS) combined with chemometric methods for fast identification of U(VI)-bearing minerals in a mining context. We analyzed a sample set which was representative of several environmental conditions. The set consisted of 80 uranium-bearing samples related to mining operations, including natural minerals, minerals with uranium sorbed on the surface, and synthetic phases prepared and characterized specifically for this study. The TRLF spectra were processed using the Ward algorithm and the K-nearest neighbors (KNN) method to reveal similarities between samples and to rapidly identify the uranium-bearing phase and the associated mineralogical family. The predictive models were validated on an independent dataset, and then applied to test samples mostly taken from U mill tailings. Identification results were found to be in accordance with the available characterization data from X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). This work shows that TRLFS can be an effective decision-making tool for environmental investigations or geological prospection, considering the large diversity of uranium-bearing mineral phases and their low concentration in environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA