Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Pharmacol ; 104(5): 195-202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595966

RESUMO

M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.


Assuntos
Acetilcolina , Receptores Muscarínicos , Ratos , Humanos , Camundongos , Animais , Acetilcolina/metabolismo , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M4/metabolismo , Atropina , Ligantes , Colinérgicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M2/metabolismo , Ensaio Radioligante , Receptor Muscarínico M1/metabolismo
2.
Org Biomol Chem ; 21(25): 5181-5184, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37293894

RESUMO

Previously described approaches for the alkylation of NH-sulfoximines typically rely either on transition metal catalysis, or the use of traditional alkylation reagents and strong bases. Herein, we report a straightforward alkylation of diverse NH-sulfoximines under simple Mitsunobu-type conditions, despite the unusually high pKa of the NH center.

3.
PLoS Pathog ; 16(1): e1008134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917826

RESUMO

Caenorhabditis elegans are soil-dwelling nematodes and models for understanding innate immunity and infection. Previously, we developed a novel fluorescent dye (KR35) that accumulates in the intestine of C. elegans and reports a dynamic wave in intestinal pH associated with the defecation motor program. Here, we use KR35 to show that mutations in the Ca2+-binding protein, PBO-1, abrogate the pH wave, causing the anterior intestine to be constantly acidic. Surprisingly, pbo-1 mutants were also more susceptible to infection by several bacterial pathogens. We could suppress pathogen susceptibility in pbo-1 mutants by treating the animals with pH-buffering bicarbonate, suggesting the pathogen susceptibility is a function of the acidity of the intestinal pH. Furthermore, we use KR35 to show that upon infection by pathogens, the intestinal pH becomes neutral in a wild type, but less so in pbo-1 mutants. C. elegans is known to increase production of reactive oxygen species (ROS), such as H2O2, in response to pathogens, which is an important component of pathogen defense. We show that pbo-1 mutants exhibited decreased H2O2 in response to pathogens, which could also be partially restored in pbo-1 animals treated with bicarbonate. Ultimately, our results support a model whereby PBO-1 functions during infection to facilitate pH changes in the intestine that are protective to the host.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Calcineurina/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Animais , Bicarbonatos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Calcineurina/genética , Concentração de Íons de Hidrogênio , Mucosa Intestinal/química , Mucosa Intestinal/efeitos dos fármacos , Mutação
4.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838649

RESUMO

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Assuntos
Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/química , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 47: 128193, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118412

RESUMO

This Letter describes the synthesis and optimization of a series of heteroaryl-pyrrolidinone positive allosteric modulators (PAMs) of the muscarinic acetylcholine receptor M1 (mAChR M1). Through the continued optimization of M1 PAM tool compound VU0453595, with a focus on replacement of the 6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one with a wide variety of alternative 4,5-dihydropyrrolo-fused heteroaromatics, the generation of M1 PAMs with structurally novel chemotypes is disclosed. Two compounds from these subseries, 8b (VU6005610) and 20a (VU6005852), show robust selectivity for the M1 mAChR, and no M1 agonism. Both compounds have favorable preliminary PK profiles in vitro;8b additionally demonstrates high brain exposure in a rodent IV cassette model.


Assuntos
Descoberta de Drogas , Pirrolidinonas/farmacologia , Receptor Muscarínico M1/agonistas , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Pirrolidinonas/síntese química , Pirrolidinonas/química , Ratos , Relação Estrutura-Atividade
6.
J Org Chem ; 85(9): 6123-6130, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227869

RESUMO

Herein, we report an efficient and operationally simple synthesis of 6,7-dihydro-5H-pyrrolo[2,3-c]pyridazines and 6,7-dihydro-5H-pyrrolo[2,3-b]pyrazines via a tandem hydroamination-SNAr sequence that makes use of mild reagents under catalyst-free conditions in moderate to high yields. This chemistry expands the known scope of pyridazine/pyrazine chemistry and can be applied toward the synthesis of novel drug-like molecules with favorable bioactivity and pharmacokinetic properties.


Assuntos
Pirazinas , Piridazinas , Catálise , Indicadores e Reagentes , Pirazinas/química
7.
Bioorg Med Chem Lett ; 29(2): 342-346, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30503632

RESUMO

This letter describes the first account of the chemical optimization (SAR and DMPK profiling) of a new series of mGlu4 positive allosteric modulators (PAMs), leading to the identification of VU0652957 (VU2957, Valiglurax), a compound profiled as a preclinical development candidate. Here, we detail the challenges faced in allosteric modulator programs (e.g., steep SAR, as well as subtle structural changes affecting overall physiochemical/DMPK properties and CNS penetration).


Assuntos
Descoberta de Drogas , Compostos Heterocíclicos com 2 Anéis/farmacologia , Isoquinolinas/farmacologia , Miotonina Proteína Quinase/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Isoquinolinas/química , Estrutura Molecular , Miotonina Proteína Quinase/metabolismo , Relação Estrutura-Atividade
8.
Mol Pharmacol ; 94(2): 926-937, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895592

RESUMO

The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/química , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Diuréticos/química , Eletrólitos , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato
9.
Bioorg Med Chem Lett ; 27(11): 2479-2483, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28427812

RESUMO

This letter describes the synthesis and structure activity relationship (SAR) studies of structurally novel M4 antagonists, based on a 4,6-disubstituted core, identified from a high-throughput screening campaign. A multi-dimensional optimization effort enhanced potency at both human and rat M4 (IC50s<300nM), with no substantial species differences noted. Moreover, CNS penetration proved attractive for this series (brain:plasma Kp,uu=0.87), while other DMPK attributes were addressed in the course of the optimization effort, providing low in vivo clearance in rat (CLp=5.37mL/min/kg). Surprisingly, this series displayed pan-muscarinic antagonist activity across M1-5, despite the absence of the prototypical basic or quaternary amine moiety, thus offering a new chemotype from which to develop a next generation of pan-muscarinic antagonist agents.


Assuntos
Antagonistas Muscarínicos/síntese química , Pirimidinas/química , Receptor Muscarínico M4/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Humanos , Concentração Inibidora 50 , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/farmacocinética , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Ratos , Receptor Muscarínico M4/metabolismo , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 27(15): 3576-3581, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633897

RESUMO

This letter describes the synthesis and structure activity relationship (SAR) studies of structurally novel M4 antagonists, based on a 3-(4-aryl/heteroarylsulfonyl)piperazin-1-yl)-6-(piperidin-1-yl)pyridazine core, identified from a high-throughput screening campaign. A multi-dimensional optimization effort enhanced potency at human M4 (hM4 IC50s<200nM), with only moderate species differences noted, and with enantioselective inhibition. Moreover, CNS penetration proved attractive for this series (rat brain:plasma Kp=2.1, Kp,uu=1.1). Despite the absence of the prototypical mAChR antagonist basic or quaternary amine moiety, this series displayed pan-muscarinic antagonist activity across M1-5 (with 9- to 16-fold functional selectivity at best). This series further expands the chemical diversity of mAChR antagonists.


Assuntos
Encéfalo/metabolismo , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacocinética , Piridazinas/farmacologia , Piridazinas/farmacocinética , Receptor Muscarínico M4/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Células CHO , Cricetulus , Humanos , Antagonistas Muscarínicos/química , Piperazina , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Piridazinas/química , Ratos , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 24(2): 548-51, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24365161

RESUMO

In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance.


Assuntos
Piperazinas/síntese química , Piperidinas/síntese química , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Animais , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Piperazinas/metabolismo , Piperidinas/metabolismo , Ligação Proteica/fisiologia , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
12.
ACS Med Chem Lett ; 15(2): 302-309, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352850

RESUMO

Herein, we report the synthesis and characterization of a novel set of substituted indazole-ethanamines and indazole-tetrahydropyridines as potent serotonin receptor subtype 2 (5-HT2) agonists. Specifically, we examine the 5-HT2 pharmacology of the direct indazole analogs of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and related serotonergic tryptamines, and highlight the need for rigorous characterization of 5-HT2 subtype selectivity for these analogs, particularly for the 5-HT2B receptor subtype. Within this series, the potent analog VU6067416 (19d) was optimized to have suitable preclinical pharmacokinetic properties for in vivo dosing, although potent 5-HT2B agonist activity precluded further characterization for this series. Additionally, in silico docking studies suggest that the high potency of 19d may be a consequence of a halogen-bonding interaction with Phe2345.38 in the 5-HT2A orthosteric pocket.

13.
ACS Chem Neurosci ; 14(3): 340-350, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651763

RESUMO

Commonly known as "Quaaludes," methaqualone (1) is a sedative-hypnotic medication, with effects resembling barbiturates and other downers, that exerts its effects through modulation of γ-aminobutyric acid type A receptors (GABAAR). Following the discovery of the sedative and euphoric effects of methaqualone (1), it was quickly adopted by pharmaceutical companies and promoted by clinicians around the world as a "safe" sleeping pill option, and for a period it was available over the counter. The popularity of methaqualone (1) soared worldwide, and many people began to use it recreationally for its sedative-hypnotic-like psychoactive effects. Not long after its introduction, many individuals began to misuse the drug leading to overdoses and drug dependence which brought to light methaqualone's (1) addictive nature. In this review, the background, synthesis, pharmacology, metabolism, and pharmacokinetics of methaqualone (1) will be covered along with its discovery, history, and the derivatives that are currently available around the world through manufacture in clandestine laboratories.


Assuntos
Overdose de Drogas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Metaqualona/farmacologia , Hipnóticos e Sedativos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
14.
J Med Chem ; 66(16): 11027-11039, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584406

RESUMO

The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.


Assuntos
Doenças das Valvas Cardíacas , Receptor 5-HT2B de Serotonina , Humanos , Serotonina , Fenfluramina , Descoberta de Drogas
15.
Assay Drug Dev Technol ; 21(3): 89-96, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930852

RESUMO

Antagonists of the serotonin receptor 2B (5-HT2B) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT2B antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT2B antagonists devoid of centrally-mediated adverse effects.


Assuntos
Receptor 5-HT2B de Serotonina , Serotonina , Humanos
16.
JACC Basic Transl Sci ; 8(10): 1379-1388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094686

RESUMO

Ligands for the serotonin 2B receptor (5-HT2B) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT2B. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia. VU6047534 is a novel 5-HT2B partial agonist that is peripherally restricted and able to both prevent and treat Sugen-hypoxia-induced pulmonary arterial hypertension. We have synthesized and characterized a structurally novel series of 5-HT2B ligands with high potency and selectivity for the 5-HT2B receptor subtype. Next-generation 5-HT2B ligands with similar characteristics, and predicted to be systemically restricted in humans, are currently advancing to investigational new drug-enabling studies.

17.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423268

RESUMO

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

18.
ACS Med Chem Lett ; 12(8): 1342-1349, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413964

RESUMO

Herein, we report the SAR leading to the discovery of VU6028418, a potent M4 mAChR antagonist with high subtype-selectivity and attractive DMPK properties in vitro and in vivo across multiple species. VU6028418 was subsequently evaluated as a preclinical candidate for the treatment of dystonia and other movement disorders. During the characterization of VU6028418, a novel use of deuterium incorporation as a means to modulate CYP inhibition was also discovered.

19.
ACS Chem Neurosci ; 11(23): 3955-3967, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786301

RESUMO

Because of its remarkable potency and relative ease of synthesis, carfentanil (1) has recently emerged as a problematic contaminant in other drugs of abuse. Carfentanil and its close analogues, currently approved only for large animal veterinary medicine, have found use both as illicit additives to the clandestine manufacture of scheduled drugs and as chemical weapons. In this Review, the background, synthesis, manufacture, metabolism, pharmacology, approved indications, dosage, and adverse effects of carfentanil will be discussed along with its emergence as a key player in the ongoing opioid crisis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA