Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253555

RESUMO

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Assuntos
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Telomerase , Tionucleosídeos , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Telômero
2.
Cancer Cell ; 41(10): 1731-1748.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774698

RESUMO

The role of tumor mutational burden (TMB) in shaping tumor immunity is a key question that has not been addressable using genetically engineered mouse models (GEMMs) of lung cancer. To induce TMB in lung GEMMs, we expressed an ultra-mutator variant of DNA polymerase-E (POLE)P286R in lung epithelial cells. Introduction of PoleP286R allele into KrasG12D and KrasG12D; p53L/L (KP) models significantly increase their TMB. Immunogenicity and sensitivity to immune checkpoint blockade (ICB) induced by Pole is partially dependent on p53. Corroborating these observations, survival of NSCLC patients whose tumors have TP53truncating mutations is shorter than those with TP53WT with immunotherapy. Immune resistance is in part through reduced antigen presentation and in part due to mutational heterogeneity. Total STING protein levels are elevated in Pole mutated KP tumors creating a vulnerability. A stable polyvalent STING agonist or p53 induction increases sensitivity to immunotherapy offering therapeutic options in these polyclonal tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Mutação
3.
Cancer Res ; 81(7): 1813-1826, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495232

RESUMO

Small cell lung cancer (SCLC) is a pulmonary neuroendocrine cancer with very poor prognosis and limited effective therapeutic options. Most patients are diagnosed at advanced stages, and the exact reason for the aggressive and metastatic phenotype of SCLC is completely unknown. Despite a high tumor mutational burden, responses to immune checkpoint blockade are minimal in patients with SCLC. This may reflect defects in immune surveillance. Here we illustrate that evading natural killer (NK) surveillance contributes to SCLC aggressiveness and metastasis, primarily through loss of NK-cell recognition of these tumors by reduction of NK-activating ligands (NKG2DL). SCLC primary tumors expressed very low level of NKG2DL mRNA and SCLC lines express little to no surface NKG2DL at the protein level. Chromatin immunoprecipitation sequencing showed NKG2DL loci in SCLC are inaccessible compared with NSCLC, with few H3K27Ac signals. Restoring NKG2DL in preclinical models suppressed tumor growth and metastasis in an NK cell-dependent manner. Likewise, histone deacetylase inhibitor treatment induced NKG2DL expression and led to tumor suppression by inducing infiltration and activation of NK and T cells. Among all the common tumor types, SCLC and neuroblastoma were the lowest NKG2DL-expressing tumors, highlighting a lineage dependency of this phenotype. In conclusion, these data show that epigenetic silencing of NKG2DL results in a lack of stimulatory signals to engage and activate NK cells, highlighting the underlying immune avoidance of SCLC and neuroblastoma. SIGNIFICANCE: This study discovers in SCLC and neuroblastoma impairment of an inherent mechanism of recognition of tumor cells by innate immunity and proposes that this mechanism can be reactivated to promote immune surveillance.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Evasão Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Nus , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Evasão Tumoral/genética
4.
Nat Cancer ; 1(4): 394-409, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-33269343

RESUMO

EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Transdução de Sinais , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA