RESUMO
Carbohydrates are the major component of biomass and have unique potential as a sustainable source of building blocks for chemicals, materials, and biofuels because of their low cost, ready availability, and stereochemical diversity. With a view to upgrading carbohydrates to access valuable nitrogen-containing sugar-like compounds such as aminopolyols, biocatalytic aminations using transaminase enzymes (TAms) have been investigated as a sustainable alternative to traditional synthetic strategies. Demonstrated here is the reaction of TAms with sugar-derived tetrahydrofuran (THF) aldehydes, obtained from the regioselective dehydration of biomass-derived sugars, to provide access to cyclic aminodiols in high yields. In a preliminary study we have also established the direct transamination of sugars to give acyclic aminopolyols. Notably, the reaction of the ketose d-fructose proceeds with complete stereoselectivity to yield valuable aminosugars in high purity.
Assuntos
Furanos/metabolismo , Açúcares/metabolismo , Transaminases/metabolismo , Aminação , Biocatálise , Biocombustíveis , Biomassa , Carboidratos/química , Colorimetria , Furanos/química , Monossacarídeos/química , Monossacarídeos/metabolismo , Estereoisomerismo , Açúcares/químicaRESUMO
Herein, we report a novel intramolecular ring-closing reaction of biaryl thioethers that give access to highly functionalized dibenzothiophene sulfonium salts under mild conditions. The resulting precursors react regioselectively with [18F]fluoride to give [18F]fluoroarenes in predictable radiochemical yields. The strategy expands the available radiochemical space and provides superior labeling efficiency for clinically relevant PET tracers.
RESUMO
Herein, we report a silver-free Pd(II)-catalyzed C(sp3)-H arylation of saturated bicyclic and tricyclic amine scaffolds. The reaction provides good yields using a range of aryl iodides and aryl bromides including functionalized examples bearing aldehydes, ketones, esters, free phenols, and heterocycles. The methodology has been applied to medicinally relevant scaffolds. Two of the intermediate palladium complexes in the catalytic cycle have been prepared and characterized, and a mechanism is proposed. Removal of the directing group proceeded with good yield under relatively mild conditions.
RESUMO
This article outlines the benefits of using 'Design of Experiments' (DoE) optimisation during the development of new synthetic methodology. A particularly important factor in the development of new chemical reactions is the choice of solvent which can often drastically alter the efficiency and selectivity of a process. Whilst solvent optimisation is usually done in a non-systematic way based upon a chemist's intuition and previous laboratory experience, we illustrate how optimisation of the solvent for a reaction can be carried out by using a 'map of solvent space' in a DoE optimisation. A new solvent map has been developed specifically for optimisation of new chemical reactions using principle component analysis (PCA) incorporating 136 solvents with a wide range of properties. The new solvent map has been used to identify safer alternatives to toxic/hazardous solvents, and also in the optimisation of an S(N)Ar reaction.
RESUMO
Two new palladium-catalysed reactions have been developed for the synthesis of stable 4-substituted benzooxaborinin-1-ols. A palladium-catalysed cyclisation of ortho-alkenylbenzene boronic acids can be used to access 4-chlorobenzooxaborinin-1-ols via a Wacker-type oxidation and chlorination. Alternatively, ortho-alkynylbenzene boronic acids undergo a palladium-catalysed oxyallylation reaction to provide 4-allylbenzooxaborinin-1-ols.
RESUMO
The [4+2] cycloaddition of 3-alkoxyfurans with N-substituted maleimides provides the first general route for preparing endo-cantharimides. Unlike the corresponding reaction with 3H furans, the reaction can tolerate a broad range of 2-substitued furans including alkyl, aromatic, and heteroaromatic groups. The cycloaddition products were converted into a range of cantharimide products with promising lead-like properties for medicinal chemistry programs. Furthermore, the electron-rich furans are shown to react with a variety of alternative dienophiles to generate 7-oxabicyclo[2.2.1]heptane derivatives under mild conditions. DFT calculations have been performed to rationalize the activation effect of the 3-alkoxy group on a furan Diels-Alder reaction.
Assuntos
Álcoois/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Reação de Cicloadição/métodos , Furanos/química , Álcoois/síntese química , Furanos/síntese química , Maleimidas/síntese química , Maleimidas/química , Modelos MolecularesRESUMO
In this paper we describe the use of a chiral aldehyde derived from lactate esters for determining the enantiopurity of primary amines, via the formation of diastereomeric imines. The method was shown to be suitable for reproducibly determining the enantiopurity of a diverse set of chiral amines. Both enantiomers of the aldehyde can be prepared in two steps from commercially available materials.
RESUMO
Herein, we report the application of allyl acetate to the palladium-catalysed dearomatising diallylation of indoles. The reaction can be carried out by using a readily available palladium catalyst at room temperature, and can be applied to a wide range of substituted indoles to provide access to the corresponding 3,3-diallylindolinines. These compounds are versatile synthetic intermediates that readily undergo Ugi reactions or proline-catalysed asymmetric Mannich reactions. Alternatively, acylation of the 3,3-diallylindolinines with an acid chloride or a chloroformate, followed by treatment with aluminium chloride, enables 2,3-diallylindoles to be prepared. By using ring-closing metathesis, functionalised spirocyclic indoline scaffolds can be accessed from the Ugi products, and a dihydrocarbazole can be prepared from the corresponding 2,3-diallylindole.
Assuntos
Acetatos/química , Compostos Alílicos/química , Indóis/química , Paládio/química , Compostos de Espiro/química , Acilação , Carbazóis/síntese química , Carbazóis/química , Catálise , EstereoisomerismoRESUMO
Ene-reductases (ERs) of the Old Yellow Enzyme family catalyse asymmetric reduction of activated alkenes providing chiral products. They have become an important method in the synthetic chemists' toolbox offering a sustainable alternative to metal-catalysed asymmetric reduction. Development of new biocatalytic alkene reduction routes, however needs easy access to novel biocatalysts. A sequence-based functional metagenomic approach was used to identify novel ERs from a drain metagenome. From the ten putative ER enzymes initially identified, eight exhibited activities towards widely accepted mono-cyclic substrates with several of the ERs giving high reaction yields and stereoselectivities. Two highly performing enzymes that displayed excellent co-solvent tolerance were used for the stereoselective reduction of sterically challenging bicyclic enones where the reactions proceeded in high yields, which is unprecedented to date with wild-type ERs. On a preparative enzymatic scale, reductions of Hajos-Parish, Wieland-Miescher derivatives and a tricyclic ketone proceeded with good to excellent yields.
RESUMO
Whereas the N-ylide mesomeric betaine 2, consisting of a fluorenyl anion directly attached to an imidazolium ring, is not in equilibrium with its putative free N-(fluoren-9-yl)imidazol-2-ylidene tautomer, its reaction with a metallic centre induces its interconversion to yield the corresponding monoligated N-heterocyclic carbene complex (Au(I) and Rh(I)). Deprotonation of 2 and coordination to the Rh(I)(COD) fragment allows the isolation of complex 7 displaying a rarely observed four-membered NHC-containing metallacycle and an enforced η(1)-fluorenyl ligand. Upon reaction with CpFe(CO)2I precursor, insertion of a carbonyl ligand into the Fe-fluorenyl bond occurs and yields the acyl-Fe complex 8.
RESUMO
The 4-hydroxyimidazolium salt, readily prepared in two steps by acylation of a formamidine and quaternization of the second nitrogen, affords, after deprotonation, the anionic imidazol-2-ylidene-4-olate, which can be complexed to a transition metal and still be subsequently functionalized at O or C backbone atom in the outer coordination sphere of the metal.