Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163491

RESUMO

Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5'-TTC (N)3 GAA3') located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the -280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Receptor 5-HT2B de Serotonina/genética , Fatores de Transcrição STAT/metabolismo , Neoplasias Uveais/metabolismo , Região 5'-Flanqueadora/genética , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Fatores de Transcrição STAT/genética
2.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830308

RESUMO

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


Assuntos
Clusterina/genética , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Expressão Gênica , Transdução de Sinais/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Engenharia Tecidual/métodos , Fator de Transcrição AP-1/metabolismo , Cicatrização/genética , Adulto , Idoso , Células Cultivadas , Criança , Clusterina/metabolismo , Epitélio Corneano/metabolismo , Fibroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Doadores de Tecidos , Transfecção
3.
Exp Eye Res ; 184: 72-77, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002821

RESUMO

Uveal melanoma (UM), although a very rare disease, remains a particularly aggressive type of cancer as near 50% of the UM presenting patients will also develop liver metastases within 15 years from the initial diagnostic. One of the most reliable predictive markers of UM at risk of evolving toward the formation of liver lesions is an abnormally elevated level of expression of the transcript encoding the 5-Hydroxytryptamine (serotonin) receptor 2B (HTR2B). In our previous study, we demonstrated that transcription of the HTR2B gene was under the regulatory influences of two transcription factors (TFs), NFI and RUNX1. However, the action of these TFs was insufficient to explain the elevated level of the HTR2B protein in metastatic UM cells or the discrepancies we observed between its expression at the transcriptional and protein levels, therefore suggesting that additional post-translational modifications may also contribute to the altered expression of HTR2B in UM cells. In the present study, we investigated whether the turnover of HTR2B by the proteasome could account at least in part for its deregulated expression. Microarray analyses performed with UM cell lines derived from both non-metastatic and metastatic UM primary tumors revealed important alterations in the expression of some of the transcripts encoding both the E3 ubiquitin ligases and the various subunits of the proteasome, and these modifications were further exacerbated by cell passaging in culture. These alterations also correlated with significant changes in the enzymatic activity of the proteasome. However, the highest proteasome activity and amount of ubiquitinated HTR2B observed in the metastatic T142 cell line, as revealed by immunoprecipitation of ubiquitinated proteins and Western blotting using the HTR2B antibody, apparently had little impact on the total content of HTR2B protein. This contrasts with the near total disappearance of this receptor in the non-metastatic T108 cell line. Our study therefore suggests that the inability of the proteasome to degrade HTR2B in metastatic UM cells might rely on an increased stability of the ubiquitinated receptor in these cells.


Assuntos
Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Neoplasias Uveais/metabolismo , Adolescente , Adulto , Idoso , Western Blotting , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias Uveais/genética
4.
Int J Mol Sci ; 19(10)2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347896

RESUMO

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B- but not in HTR23B⁺ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Melanoma/genética , Fatores de Transcrição NFI/metabolismo , Receptor 5-HT2B de Serotonina/genética , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Melanoma/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptor 5-HT2B de Serotonina/metabolismo , Neoplasias Uveais/metabolismo
5.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261611

RESUMO

Psoriasis is a chronic inflammatory skin disease for which no cure has emerged. Its complex etiology requires the development of an in vitro model representative of the pathology. In this study, we exploited gene profiling analyses on microarray in order to characterize and further optimize the production of a human psoriatic skin model representative of this in vivo skin disease. Various skin substitutes were produced by tissue-engineering using biopsies from normal, healthy donors, or from lesional or non-lesional skin samples from patients with psoriasis, and their gene expression profiles were examined by DNA microarray. We demonstrated that more than 3540 and 1088 genes (two-fold change) were deregulated between healthy/lesional and lesional/non-lesional psoriatic substitutes, respectively. Moreover, several genes related to lipid metabolism, such as PLA2G4E and PLA2G4C, were identified as repressed in the lesional substitutes. In conclusion, gene profiling analyses identified a list of deregulated candidate genes associated with various metabolic pathways that may contribute to the progression of psoriasis.


Assuntos
Perfilação da Expressão Gênica/métodos , Psoríase/genética , Pele Artificial , Pele/metabolismo , Engenharia Tecidual/métodos , Adolescente , Adulto , Idoso , Células Cultivadas , Citocinas/genética , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pessoa de Meia-Idade , Pele/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA