Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Org Chem ; 88(13): 8674-8689, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341522

RESUMO

ß-cyclodextrin (ßCyD) derivatives equipped with aromatic appendages at the secondary face exhibit tailorable self-assembling capabilities. The aromatic modules can participate in inclusion phenomena and/or aromatic-aromatic interactions. Supramolecular species can thus form that, at their turn, can engage in further co-assembling with third components in a highly regulated manner; the design of nonviral gene delivery systems is an illustrative example. Endowing such systems with stimuli responsiveness while keeping diastereomeric purity and a low synthetic effort is a highly wanted advancement. Here, we show that an azobenzene moiety can be "clicked" to a single secondary O-2 position of ßCyD affording 1,2,3-triazole-linked ßCyD-azobenzene derivatives that undergo reversible light-controlled self-organization into dimers where the monomer components face their secondary rims. Their photoswitching and supramolecular properties have been thoroughly characterized by UV-vis absorption, induced circular dichroism, nuclear magnetic resonance, and computational techniques. As model processes, the formation of inclusion complexes between a water-soluble triazolylazobenzene derivative and ßCyD as well as the assembly of native ßCyD/ßCyD-azobenzene derivative heterodimers have been investigated in parallel. The stability of the host-guest supramolecules has been challenged against the competitor guest adamantylamine and the decrease of the medium polarity using methanol-water mixtures. The collective data support that the E-configured ßCyD-azobenzene derivatives, in aqueous solution, form dimers stabilized by the interplay of aromatic-aromatic and aromatic-ßCyD cavity interactions after partial reciprocal inclusion. Photoswitching to the Z-isomer disrupts the dimers into monomeric species, offering opportunity for the spatiotemporal control of the organizational status by light.


Assuntos
beta-Ciclodextrinas , Dimerização , Compostos Azo , Polímeros , Água
2.
Beilstein J Org Chem ; 19: 139-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814451

RESUMO

Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-ß-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-ß-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.

3.
Macromol Rapid Commun ; 43(11): e2200145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426201

RESUMO

A robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs. These properties can be taken into advantage to implement sequential levels of stimuli responsiveness by combining computational design, precision chemistry and programmed host-guest interactions. Specifically, it is shown that supramolecular dimers implying a trimeric CT-tetraethyleneimine star polycation and purposely designed bis-adamantane guests are preorganized to efficiently complex plasmid DNA (pDNA) into transfection-competent nanocomplexes. The stability of the dimer species is responsive to the protonation state of the cationic clusters, resulting in dissociation at acidic pH. This process facilitates endosomal escape, but reassembling can take place in the cytosol then handicapping pDNA nuclear import. By equipping the ditopic guest with a redox-sensitive disulfide group, recapturing phenomena are prevented, resulting in drastically improved transfection efficiencies both in vivo and in vitro.


Assuntos
Adamantano , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Oxirredução , Polieletrólitos , Polímeros/química
4.
Chemistry ; 27(36): 9429-9438, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33882160

RESUMO

Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.


Assuntos
Ciclodextrinas , Nanopartículas , DNA , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
5.
Chemistry ; 26(66): 15259-15269, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710799

RESUMO

Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.


Assuntos
Ciclodextrinas , DNA/química , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
6.
Biomacromolecules ; 21(12): 5173-5188, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084317

RESUMO

The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.


Assuntos
Dendrímeros , Polímeros , Cátions , DNA , Plasmídeos , Transfecção
7.
Chemistry ; 24(15): 3825-3835, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29341305

RESUMO

Engineering self-assembled superstructures through complexation of plasmid DNA (pDNA) and single-isomer nanometric size macromolecules (molecular nanoparticles) is a promising strategy for gene delivery. Notably, the functionality and overall architecture of the vector can be precisely molded at the atomic level by chemical tailoring, thereby enabling unprecedented opportunities for structure/self-assembling/pDNA delivery relationship studies. Beyond this notion, by judiciously preorganizing the functional elements in cyclodextrin (CD)-based molecular nanoparticles through covalent dimerization, here we demonstrate that the morphology of the resulting nanocomplexes (CDplexes) can be tuned, from spherical to ellipsoidal, rod-type, or worm-like nanoparticles, which makes it possible to gain understanding of their shape-dependent transfection properties. The experimental findings are in agreement with a shift from chelate to cross-linking interactions on going from primary-face- to secondary-face-linked CD dimers, the pDNA partner acting as an active payload and as a template. Most interestingly, the transfection efficiency in different cells was shown to be differently impacted by modifications of the CDplex morphology, which has led to the identification of an optimal prototype for tissue-selective DNA delivery to the spleen in vivo.


Assuntos
Ciclodextrinas/química , DNA/química , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Nanopartículas/química , Plasmídeos , Polímeros/química , Baço/efeitos dos fármacos , Transfecção
8.
J Org Chem ; 83(10): 5588-5597, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29683327

RESUMO

The topology of ß-cyclodextrin can be molded, from toroidal to ovoid basket-shaped, by the installation of an o- or m-xylylene moiety connecting two consecutive d-glucopyranosyl units through the secondary O-2(I) and O-3(II) positions. This strategy can be exploited advantageously to precast the cavity for preferential inclusion of globular or planar guests as well as to privilege dimeric or monomeric species in water solution.

9.
J Exp Bot ; 68(17): 4915-4927, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992305

RESUMO

Hydrogen sulfide-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the post-translational modification of cysteine residues to form a persulfidated thiol motif, a process called protein persulfidation. We have developed a comparative and quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in wild-type Arabidopsis and L-CYSTEINE DESULFHYDRASE 1 mutant leaves using the tag-switch method. The 2015 identified persulfidated proteins were isolated from plants grown under controlled conditions, and therefore, at least 5% of the entire Arabidopsis proteome may undergo persulfidation under baseline conditions. Bioinformatic analysis revealed that persulfidated cysteines participate in a wide range of biological functions, regulating important processes such as carbon metabolism, plant responses to abiotic and biotic stresses, plant growth and development, and RNA translation. Quantitative analysis in both genetic backgrounds reveals that protein persulfidation is mainly involved in primary metabolic pathways such as the tricarboxylic acid cycle, glycolysis, and the Calvin cycle, suggesting that this protein modification is a new regulatory component in these pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteômica/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cistationina gama-Liase/genética , Mutação , Proteoma/metabolismo , Sulfetos
10.
Org Biomol Chem ; 14(42): 10037-10049, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27722597

RESUMO

Exhaustive structure-efficacy relationship studies on nonviral gene delivery systems are often hampered by the ill-defined or polydisperse nature of the formulations. Facial amphiphiles based on rigid cage-type molecular scaffolds offer unique possibilities towards these studies. Taking advantage of regioselective functionalization schemes, we have synthesized a library of cationic cyclodextrin (CD) derivatives combining a range of hydrophilic and lipophilic domains. We have scrutinized how the hydrophilic-lipophilic balance (HLB) around the CD scaffold determines their self-assembly capabilities and the DNA binding and release abilities of the corresponding CD : DNA nanocomplexes (CDplexes). These features have been ultimately correlated with their capabilities to deliver a reporter luciferase-encoding pDNA into COS-7 cells. The ensemble of results demonstrates that fine tuning of the HLB is critical to induce compaction of DNA by the CD-based facial amphiphiles into transfection-productive CDplexes.


Assuntos
Ciclodextrinas/química , DNA/química , DNA/genética , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Animais , Células COS , Chlorocebus aethiops , Transfecção
11.
Chemistry ; 21(34): 12093-104, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184887

RESUMO

Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a ß-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.


Assuntos
DNA/química , Nanopartículas/química , Oligonucleotídeos/química , Fragmentos de Peptídeos/química , Poliaminas/química , beta-Ciclodextrinas/química , Linhagem Celular , DNA/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Concentração de Íons de Hidrogênio , Oligonucleotídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Polieletrólitos , Transfecção
12.
Chemistry ; 20(22): 6622-7, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24740814

RESUMO

The ability of cyclodextrin-based polycationic cluster to undergo reversible DNA condensation and release in a physiologically useful pH window has been finely tuned by the installation of a capping xylylene moiety at the secondary face of the cyclooligosaccharide. This strategy can be exploited advantageously in the design of self-assembling nonviral gene-delivery systems from molecular entities.


Assuntos
Ciclodextrinas/química , DNA/química , Nanoestruturas/química , Animais , Células COS , Chlorocebus aethiops , Dicroísmo Circular , DNA/metabolismo , Dimerização , Concentração de Íons de Hidrogênio , Poliaminas/química , Polieletrólitos , Transfecção
13.
Org Biomol Chem ; 12(14): 2289-301, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589885

RESUMO

Gaucher disease (GD) is a rare monogenetic disorder leading to dysfunction of acid ß-glucosidase (ß-glucocerebrosidase; GCase) and accumulation of glucosylceramide in lysosomes, especially in macrophages (Gaucher cells). Many of the mutations at the origin of GD do not impair the catalytic activity of GCase, but cause misfolding and subsequent degradation by the quality control system at the endoplasmic reticulum. Pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the endogenous mutant enzyme represent promising alternatives to the currently available enzyme replacement and substrate reduction therapies (ERT and SRT, respectively), but unfavorable biodistribution and potential side-effects remain important issues. We have now designed a strategy to enhance the controlled delivery of PCs to macrophages that exploit the formation of ternary complexes between the PC, a trivalent mannosylated ß-cyclodextrin (ßCD) conjugate and the macrophage mannose receptor (MMR). First, PC candidates with appropriate relative avidities towards the ßCD cavity and the GCase active site were selected to ensure efficient transfer of the PC cargo from the host to the GCase active site. Control experiments confirmed that the ßCD carrier was selectively recognized by mannose-specific lectins and that the corresponding PC:mannosylated ßCD supramolecular complex retained both the chaperoning activity, as confirmed in human GD fibroblasts, and the MMR binding ability. Finally, fluorescence microscopy techniques proved targeting and cellular uptake of the PC-loaded system in macrophages. Altogether, the results support that combined cyclodextrin encapsulation and glycotargeting may improve the efficacy of PCs for GD.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Doença de Gaucher/tratamento farmacológico , Macrófagos/metabolismo , Chaperonas Moleculares/administração & dosagem , beta-Ciclodextrinas/química , Configuração de Carboidratos , Doença de Gaucher/patologia , Humanos , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , beta-Ciclodextrinas/administração & dosagem
14.
J Org Chem ; 77(3): 1273-88, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22185523

RESUMO

A series of ß-cyclodextrin (ßCD)-scaffolded glycoclusters exposing heterogeneous yet perfectly controlled displays of α-mannosyl (α-Man) and ß-lactosyl (ß-Lact) antennas were synthesized to probe the mutual influence of varying densities of the saccharide motifs in the binding properties toward different plant lectins. Enzyme-linked lectin assay (ELLA) data indicated that the presence of ß-Lact residues reinforced binding of α-Man to the mannose-specific lectin concanavalin A (Con A) even though homogeneous ß-Lact clusters are not recognized at all by this lectin, supporting the existence of synergic recognition mechanisms (heterocluster effect). Conversely, the presence of α-Man motifs in the heteroglycoclusters also resulted in a binding-enhancing effect of ß-Lact toward peanut agglutinin (PNA), a lectin strongly binding multivalent lactosides but having no detectable affinity for α-mannopyranosides, for certain architectural arrangements. Two-site, sandwich-type ELLA data corroborated the higher lectin clustering efficiency of heterogeneous glycoclusters compared with homogeneous displays of the putative sugar ligand with identical valency. A turbidity assay was also consistent with the previous observations. Most revealingly, the lectin cross-linking ability of heterogeneous glycoclusters was sensitive to the presence of high concentrations of the non-ligand sugar, strongly suggesting that "mismatching" saccharide motifs may modulate carbohydrate-lectin specific recognition in a lectin-dependent manner when present in highly dense displays together with the "matching" ligand, a situation frequently encountered in biological systems.


Assuntos
Lectinas de Plantas/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo , Configuração de Carboidratos , Lactose/química , Manose/química , Modelos Moleculares
15.
Chem Soc Rev ; 40(3): 1586-608, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21042619

RESUMO

Cyclodextrin (CD) history has been largely dominated by their unique ability to form inclusion complexes with guests fitting in their hydrophobic cavity. Chemical funcionalization was soon recognized as a powerful mean for improving CD applications in a wide range of fields, including drug delivery, sensing or enzyme mimicking. However, 100 years after their discovery, CDs are still perceived as novel nanoobjects of undeveloped potential. This critical review provides an overview of different strategies to promote interactions between CD conjugates and genetic material by fully exploiting the inside-outside/upper-lower face anisotropy of the CD nanometric platform. Covalent modification, self-assembling and supramolecular ligation can be put forward with the ultimate goal to build artificial viruses for programmed and efficient gene therapy (222 references).


Assuntos
Ciclodextrinas/química , Técnicas de Transferência de Genes , DNA/química , DNA/metabolismo , Dendrímeros/química , Humanos , Nanopartículas/química , Polímeros/química
16.
Org Biomol Chem ; 9(11): 4160-7, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21483943

RESUMO

Cyclodextrin-based host-guest chemistry has been exploited to facilitate co-crystallization of recombinant human acid ß-glucosidase (ß-glucocerebrosidase, GlcCerase) with amphiphilic bicyclic nojirimycin analogues of the sp(2)-iminosugar type. Attempts to co-crystallize GlcCerase with 5-N,6-O-[N'-(n-octyl)iminomethylidene]nojirimycin (NOI-NJ) or with 5-N,6-S-[N'-(n-octyl)iminomethylidene]-6-thionojirimycin (6S-NOI-NJ), two potent inhibitors of the enzyme with promising pharmacological chaperone activity for several Gaucher disease-associated mutations, were unsuccessful probably due to the formation of aggregates that increase the heterogeneity of the sample and affect nucleation and growth of crystals. Cyclomaltoheptaose (ß-cyclodextrin, ßCD) efficiently captures NOI-NJ and 6S-NOI-NJ in aqueous media to form inclusion complexes in which the lipophilic tail is accommodated in the hydrophobic cavity of the cyclooligosaccharide. The dissociation constant of the complex of the amphiphilic sp(2)-iminosugars with ßCD is two orders of magnitude higher than that of the corresponding complex with GlcCerase, allowing the efficient transfer of the inhibitor from the ßCD cavity to the GlcCerase active site. Enzyme-inhibitor complexes suitable for X-ray analysis were thus grown in the presence of ßCD. In contrast to what was previously observed for the complex of GlcCerase with the more basic derivative, 6-amino-6-deoxy-5-N,6-N-[N'-(n-octyl)iminomethylidene]nojirimycin (6N-NOI-NJ), the ß-anomers of both NOI-NJ and 6S-NOI-NJ were seen in the active site, even though the α-anomer was exclusively detected both in aqueous solution and in the corresponding ßCD:sp(2)-iminosugar complexes. Our results further suggest that cyclodextrin derivatives might serve as suitable delivery systems of amphiphilic glycosidase inhibitors in a biomedical context.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ciclodextrinas/química , Glucosilceramidase/química , 1-Desoxinojirimicina/química , Cristalografia por Raios X , Glucosilceramidase/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
17.
J Drug Target ; 29(4): 439-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210947

RESUMO

Erlotinib (ERL), a tyrosine kinase inhibitor approved for therapeutic use in non-small cell lung cancer is further researched for eventual liver cancer treatment. However, conventional ERL has important bioavailability problems resulting from oral administration, poor solubility and gastrointestinal degradation into inactive metabolites. Alternative administration routes and nanoparticulate drug delivery systems are studied to prevent or reduce these drawbacks. In this study, ERL-loaded CD nanosphere and nanocapsule formulations capable of cholesterol depletion in resistant cancer cells were evaluated for ERL delivery. Drug loading and release profile depended largely on the surface charge of nanoparticles. Antiproliferative activity data obtained from 2D and 3D cell culture models demonstrated that polycationic ßCD nanocapsules were the most effective formulation for ERL delivery to lung and liver cancer cells. 3D tumour tumoral penetration studies further revealed that nanocapsule formulations penetrated deeper into the tumour through the multilayered cells. Furthermore, all formulations were able to extract membrane cholesterol from lung and liver cancer cell lines, indicating the induction of apoptosis and overcoming drug resistance. In conclusion, given their tumoral penetration and cell membrane cholesterol depletion abilities, amphiphilic CD nanocapsules emerge as promising alternatives to improve the safety and efficiency of ERL treatment of both liver and lung tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclodextrinas/administração & dosagem , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colesterol/administração & dosagem , Colesterol/síntese química , Colesterol/farmacocinética , Ciclodextrinas/síntese química , Ciclodextrinas/farmacocinética , Relação Dose-Resposta a Droga , Cloridrato de Erlotinib/síntese química , Cloridrato de Erlotinib/farmacocinética , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas
18.
Int J Pharm ; 598: 120379, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592288

RESUMO

Hepatocellular carcinoma (HCC) is a highly metastatic primary liver cancer generating molecular alterations that end up escaping the apoptotic machinery and conferring multidrug resistance. Targeted medicines with increased and selective cytotoxicity and minimal drug resistance are essential for the treatment of HCC. In this study, a self-assembled polycationic (PC) amphiphilic ß-cyclodextrin (ßCDC6) nanoparticle formulation was characterized and its efficacy over HCC cell line HepG2 was evaluated in terms of cytotoxicity, apoptotic potential, chemosensitivity and mitochondrial balance utilizing biochemical, gene expression and proteomic approaches without encapsulating an anti-neoplastic agent. Blank PC ßCDC6 exerted an anti-proliferative effect on 3D multicellular HepG2 spheroid tumors. These nanoparticles were able to trigger apoptosis proved by caspase 3/7 activity, gene expression and flow cytometry studies. The subjection of PC restored the chemosensitivity of HepG2 cells by suppressing the function of p-glycoprotein. The proteomic studies with Q-TOF LC/MS revealed 73 proteins that are aberrantly encoded after cells were treated with the blank PC. Metabolomic analysis further confirmed the shift in certain biological pathways. Thus, we confirmed that the hepatocellular carcinoma-targeting ßCDC6 PC nanoparticles induce apoptosis, lower the rate of cell proliferation, hinder multidrug resistance and they are convenient carriers for eventual therapeutic administrations in HCC patients.


Assuntos
Carcinoma Hepatocelular , Ciclodextrinas , Neoplasias Hepáticas , Nanopartículas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Proteômica
19.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670527

RESUMO

The uniqueness of paclitaxel's antimitotic action mechanism has fueled research toward its application in more effective and safer cancer treatments. However, the low water solubility, recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion, the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for intravenous paclitaxel delivery.

20.
Eur J Pharm Biopharm ; 169: 168-177, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700001

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world and is the second leading cause of cancer related deaths. New cases are increasingly diagnosed every day, but current therapeutic options are still insufficient for an effective treatment. In CRC treatment, there is a significant need for alternative treatment approaches that can both prevent relapse and provide strong antimetastatic effects as the intestines and colon are prone to metastasis to neighboring organs and tissues as well as the liver and the lung. In this study, optimized polycationic cyclodextrin (CD) nanoparticles for oral Camptothecin (CPT) delivery were comprehensively examined for in vivo performance in early and late stage tumor bearing mouse model in terms of antitumoral and antimetastatic efficacy of CPT bound to polycationic CD nanoparticles in comparison to free CPT. In addition, the gastrointestinal localization of a single administration of fluorescent dye loaded polycationic CD nanoparticles in the gastrointestinal tract at the end of 24 h after oral administration was also imaged and evaluated by in vivo imaging system against fluorescent dye intensity. Results showed that survival percentage was significantly improved in CRC-bearing mice compared to oral CPT solution, with significantly reduced colorectal tumor masses and number of liver metastatic foci (p < 0.05). It was also possible to differentiate between the effectiveness of nanoparticles in early or late stages of CRC. In vivo imaging studies have also confirmed that polycationic CD nanoparticles are able to deliver the therapeutic load up to the colon and tend to accumulate especially in tumor foci, indicating an effective local treatment strategy. In addition number of liver metastases were significantly decreased with the CPT-loaded polycationic CD nanoparticle formulation in both early and late stage tumor models. These findings indicated that CPT-loaded polycationic CD nanoparticles could be an efficient oral nanocarrier formulation for anticancer molecules that have limited application because of oral bioavailability and stability problems.


Assuntos
Camptotecina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Ciclodextrinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal , Nanopartículas , Administração Oral , Animais , Antineoplásicos Fitogênicos/farmacologia , Disponibilidade Biológica , Neoplasias Colorretais/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Camundongos , Modelos Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Metástase Neoplásica/prevenção & controle , Polieletrólitos , Distribuição Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA