Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762114

RESUMO

Platelet-rich plasma (PRP) is an autologous biologic product used in several fields of medicine for tissue repair due to the regenerative capacity of the biomolecules of its formulation. PRP consists of a plasma with a platelet concentration higher than basal levels but with basal levels of any biomolecules present out of the platelets. Plasma contains extraplatelet biomolecules known to enhance its regenerative properties. Therefore, a PRP containing not only a higher concentration of platelets but also a higher concentration of extraplatelet biomolecules that could have a stronger regenerative performance than a standard PRP. Considering this, the aim of this work is to develop a new method to obtain PRP enriched in both platelet and extraplatelet molecules. The method is based on the absorption of the water of the plasma using hydroxyethyl acrylamide (HEAA)-based hydrogels. A plasma fraction obtained from blood, containing the basal levels of platelets and proteins, was placed in contact with the HEAA hydrogel powder to absorb half the volume of the water. The resulting plasma was characterized, and its bioactivity was analyzed in vitro. The novel PRP (nPRP) showed a platelet concentration and platelet derived growth factor (PDGF) levels similar to the standard PRP (sPRP), but the concentration of the extraplatelet growth factors IGF-1 (p < 0.0001) and HGF (p < 0.001) were significantly increased. Additionally, the cells exposed to the nPRP showed increased cell viability than those exposed to a sPRP in human dermal fibroblasts (p < 0.001) and primary chondrocytes (p < 0.01). In conclusion, this novel absorption-based method produces a PRP with novel characteristics compared to the standard PRPs, with promising in vitro results that could potentially trigger improved tissue regeneration capacity.

2.
Langmuir ; 38(11): 3360-3369, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35262362

RESUMO

Remote manipulation of superhydrophobic surfaces provides fascinating features in water interface-related applications. A superhydrophobic magnetic nanoparticle colloid layer is able to float on the water-air interface and form a stable water-solid-air interface due to its inherent water repulsion, buoyancy, and lateral capillarity properties. Moreover, it easily bends downward under an externally applied gradient magnetic field. Thanks to that, the layer creates a stable twister-like structure with a flipped conical shape, under controlled water levels, behaving as a soft and elastic material that proportionally deforms with the applied magnetic field and then goes back to its initial state in the absence of an external force. When the tip of the twister structure touches the bottom of the water container, it provides a stable magneto movable system, which has many applications in the microfluidic field. We introduce, as a proof-of-principle, three possible implementations of this structure in real scenarios, the cargo and transport of water droplets in aqueous media, the generation of magneto controllable plugs in open surface channels, and the removal of floating microplastics from the air-water interface.

3.
Biotechnol Bioeng ; 118(7): 2626-2636, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837978

RESUMO

The effect of cell-cell contact on gene transfection is mainly unknown. Usually, transfection is carried out in batch cell cultures without control over cellular interactions, and efficiency analysis relies on complex and expensive protocols commonly involving flow cytometry as the final analytical step. Novel platforms and cell patterning are being studied to control cellular interactions and improve quantification methods. In this study, we report the use of surface patterning of fibronectin for the generation of two types of mesenchymal stromal cell patterns: single-cell patterns without cell-to-cell contact, and small cell-colony patterns. Both scenarios allowed the integration of the full transfection process and the continuous monitoring of thousands of individualized events by fluorescence microscopy. Our results showed that cell-to-cell contact clearly affected the transfection, as single cells presented a maximum transfection peak 6 h earlier and had a 10% higher transfection efficiency than cells with cell-to-cell contact.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Análise de Célula Única , Transfecção , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência
4.
Mikrochim Acta ; 188(4): 143, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33774708

RESUMO

A microfluidic, label-free optical sensor for water pollutants, which is based on a packed micro-column of microspheres with refractive index similar to that of water, is presented. The perfluoropolyether microspheres are synthetized by membrane emulsification followed by UV irradiation. The microfluidic channel hosting the packed column is transparent when filled with pure water as a consequence of refractive index matching, whereas it scatters light in presence of compounds with lipophilic moieties that spontaneously adsorb on the fluorinated microspheres. The device is characterized by investigating the response to cationic and anionic surfactants. Both the signal growth rate and the recovery rate measured during washing with water depend on the type and concentration of the compounds. The cationic surfactants tested display a larger signal increase, linearly scaling with concentration. A limit of detection of 1 µM is obtained in the current configuration. The water index-matched microspheres enable to access an additional analytical parameter, that is the propagation velocity of the scattering signal along the column. This parameter is also found to scale linearly with concentration, hence providing a complementary analytical tool sensitive to the adhesion kinetics.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microesferas , Compostos de Amônio Quaternário/análise , Dodecilsulfato de Sódio/análise , Tensoativos/análise , Poluentes Químicos da Água/análise , Adsorção , Polímeros de Fluorcarboneto/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Compostos de Amônio Quaternário/química , Refratometria , Dodecilsulfato de Sódio/química , Tensoativos/química , Poluentes Químicos da Água/química
5.
Anal Chem ; 92(14): 9658-9665, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32460483

RESUMO

Low cost, easy to use cell viability tests are needed in the pharmaceutical, biomaterial, and environmental industries to measure adverse cellular effects. We present a new methodology to track cell death with high resolution. Adherent cells commonly detach from the surface when they die, but some toxic compounds promote cell adhesion. A methodology that enables both dynamic detachment monitoring but also rapid detection of toxic effects of compounds that promote cell adhesion would constitute a step forward toward high-throughput cytotoxicity measurements. We achieved dynamic digital quantification of cell viability by simple optical imaging using "single cell adhesion dot arrays" (SCADA), fibronectin (FN) dot arrays designed to accommodate a single cell on each fibronectin dot. For cytotoxicity measurements, cell-filled SCADA substrates were exposed to K2CrO4, HgSO4 salts, and dimethyl sulfoxide (DMSO). The toxic effect of DMSO and K2CrO4 was dynamically monitored by measuring the cell detachment rate during more than 30 h by quantifying the number of occupied dots in the SCADA array. HgSO4 inhibited cellular detachment from the surface, and cytotoxicity was monitored using the trypan blue life/death assay directly on the surface. In all cases, the cytotoxicity effects were easily monitored with single cell resolution, and the results were comparable to previous reports. SCADA enabled dynamic measurements at the highest resolution due to the digital measuring in this method. The integration of SCADA substrates into microfluidic platforms will provide a practical tool that will extend to fundamental research and commercial applications.


Assuntos
Bioensaio/instrumentação , Técnicas Biossensoriais/instrumentação , Sobrevivência Celular , Células-Tronco Mesenquimais/fisiologia , Análise de Célula Única/métodos , Materiais Biocompatíveis , Bioensaio/métodos , Adesão Celular , Colorimetria , Fibronectinas , Humanos , Mercúrio
6.
Sensors (Basel) ; 21(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375225

RESUMO

The main problem for the expansion of the use of microfluidic paper-based analytical devices and, thus, their mass production is their inherent lack of fluid flow control due to its uncontrolled fabrication protocols. To address this issue, the first step is the generation of uniform and reliable microfluidic channels. The most common paper microfluidic fabrication method is wax printing, which consists of two parts, printing and heating, where heating is a critical step for the fabrication of reproducible device dimensions. In order to bring paper-based devices to success, it is essential to optimize the fabrication process in order to always get a reproducible device. Therefore, the optimization of the heating process and the analysis of the parameters that could affect the final dimensions of the device, such as its shape, the width of the wax barrier and the internal area of the device, were performed. Moreover, we present a method to predict reproducible devices with controlled working areas in a simple manner.

7.
Sensors (Basel) ; 20(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041095

RESUMO

The high sensitivity of silicon microcantilever sensors has expanded their use in areas ranging from gas sensing to bio-medical applications. Photochromic molecules also represent promising candidates for a large variety of sensing applications. In this work, the operating principles of these two sensing methods are combined in order to detect the reversible conformational change of a molecular switch, spiropyran. Thus, arrays of silicon microcantilever sensors were functionalized with spiropyran on the gold covered side and used as test microcantilevers. The microcantilever deflection response was observed, in five sequential cycles, as the transition from the spiropyran (SP) (CLOSED) to the merocyanine (MC) (OPEN) state and vice-versa when induced by UV and white light LED sources, respectively, proving the reversibility capabilities of this type of sensor. The microcantilever deflection direction was observed to be in one direction when changing to the MC state and in the opposite direction when changing back to the SP state. A tensile stress was induced in the microcantilever when the SP to MC transition took place, while a compressive stress was observed for the reverse transition. These different type of stresses are believed to be related to the spatial conformational changes induced in the photochromic molecule upon photo-isomerisation.


Assuntos
Benzopiranos/química , Técnicas Biossensoriais , Indóis/química , Conformação Molecular , Nitrocompostos/química , Silício/química , Benzopiranos/síntese química , Indóis/síntese química , Nitrocompostos/síntese química , Estresse Mecânico , Propriedades de Superfície , Raios Ultravioleta
8.
Langmuir ; 34(14): 4210-4216, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29553744

RESUMO

Herein, we present the synthesis of linear photochromic norbornene polymers bearing spiropyran side groups (poly(SP-R)) and their assembly into layer-by-layer (LbL) films on glass substrates when converted to poly(MC-R) under UV irradiation. The LbL films were composed of bilayers of poly(allylamine hydrochloride) (PAH) and poly(MC-R), forming (PAH/poly(MC-R)) n coatings. The merocyanine (MC) form presents a significant absorption band in the visible spectral region, which allowed tracking of the LbL deposition process by UV-vis spectroscopy, which showed a linear increase of the characteristic MC absorbance band with increasing number of bilayers. The thickness and morphology of the (PAH/poly(MC-R)) n films were characterized by ellipsometry and scanning electron microscopy, respectively, with a height of ∼27.5 nm for the first bilayer and an overall height of ∼165 nm for the (PAH/poly(MC-R))5 multilayer film. Prolonged white light irradiation (22 h) resulted in a gradual decrease of the MC band by 90.4 ± 2.9% relative to the baseline, indicating the potential application of these films as coatings for photocontrolled delivery systems.

9.
Sensors (Basel) ; 18(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617290

RESUMO

Micro-capillaries, capable of light-regulated binding and qualitative detection of divalent metal ions in continuous flow, have been realised through functionalisation with spiropyran photochromic brush-type coatings. Upon irradiation with UV light, the coating switches from the passive non-binding spiropyran form to the active merocyanine form, which binds different divalent metal ions (Zn2+, Co2+, Cu2+, Ni2+, Cd2+), as they pass through the micro-capillary. Furthermore, the merocyanine visible absorbance spectrum changes upon metal ion binding, enabling the ion uptake to be detected optically. Irradiation with white light causes reversion of the merocyanine to the passive spiropyran form, with simultaneous release of the bound metal ion from the micro-capillary coating.

10.
Anal Chem ; 86(19): 9554-62, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158126

RESUMO

In this work, an Android application for measurement of nitrite concentration and pH determination in combination with a low-cost paper-based microfluidic device is presented. The application uses seven sensing areas, containing the corresponding immobilized reagents, to produce selective color changes when a sample solution is placed in the sampling area. Under controlled conditions of light, using the flash of the smartphone as a light source, the image captured with the built-in camera is processed using a customized algorithm for multidetection of the colored sensing areas. The developed image-processing allows reducing the influence of the light source and the positioning of the microfluidic device in the picture. Then, the H (hue) and S (saturation) coordinates of the HSV color space are extracted and related to pH and nitrite concentration, respectively. A complete characterization of the sensing elements has been carried out as well as a full description of the image analysis for detection. The results show good use of a mobile phone as an analytical instrument. For the pH, the resolution obtained is 0.04 units of pH, 0.09 of accuracy, and a mean squared error of 0.167. With regard to nitrite, 0.51% at 4.0 mg L(-1) of resolution and 0.52 mg L(-1) as the limit of detection was achieved.


Assuntos
Telefone Celular , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Microfluídica/instrumentação , Nitritos/análise , Papel
11.
Phys Chem Chem Phys ; 16(5): 1841-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24323076

RESUMO

This paper presents an extended study on the ion effects of a series of biocompatible hydrated choline based ionic liquids (ILs) on lactate oxidase (LOx), an important enzyme in biosensing technology for the in vitro detection of lactic acid. Secondary structural analysis revealed changes in the protein conformation in hydrated ILs, while thermal unfolding/aggregation dynamics showed different profiles in the presence or absence of ILs. Moreover, LOx thermally denaturised at 90 °C showed residual activity in the presence of chloride and dihydrogen phosphate anions. Kinetic and lifetime studies were also performed, providing a better understanding of the ion effects of ILs on the biocatalytic activity of the enzyme.


Assuntos
Técnicas Biossensoriais , Colina/química , Líquidos Iônicos/química , Oxigenases de Função Mista/química , Água/química , Materiais Biocompatíveis/química , Íons , Ácido Láctico/análise , Oxigenases de Função Mista/metabolismo
12.
Small Methods ; 8(1): e2300603, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772633

RESUMO

The Dean Flow, a physics phenomenon that accounts for the impact of channel curvature on fluid dynamics, has great potential to be used in microfluidic synthesis of nanoparticles. This study explores the impact of the Dean Flow on the synthesis of ZIF-8 particles. Several variables that influence the Dean Equation (the mathematical expression of Dean Flow) are tested to validate the applicability of this expression in microfluidic synthesis, including the flow rate, radius of curvature, channel cross sectional area, and reagent concentration. It is demonstrated that the current standard of reporting, providing only the flow rate and crucially not the radius of curvature, is an incomplete description that will invariably lead to irreproducible syntheses across different laboratories. An alternative standard of reporting is presented and it is demonstrated how the sleek and simple math of the Dean Equation can be used to precisely tune the final dimensions of high quality, monodisperse ZIF-8 nanoparticles between 40 and 700 nm.

13.
PLoS One ; 19(2): e0297001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381708

RESUMO

Platelet-Rich Plasma, also known as PRP, is an autologous biologic product used in medicine as a treatment for tissue repair. Nowadays, the majority of PRP obtention methods enrich only platelets, not considering extraplatelet biomolecules, which take part in several cell processes. In the present work, a novel PRP preparation method was developed to obtain a PRP rich in both platelet and plasma extraplatelet molecules. The method is based on the evaporation of the water of the plasma using a rotary evaporator. With this new methodology an increase in plasmatic growth factors and, as a consequence, a better dermal fibroblast cell viability was achieved, compared to a standard PRP formulation. This novel PRP product obtained with this new methodology showed promising results in vitro as an improved PRP treatment in future application.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Plasma Rico em Plaquetas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Plaquetas , Cicatrização
14.
Langmuir ; 29(8): 2790-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23379723

RESUMO

Fused silica microcapillaries were functionalized with spiropyran-polymer brushes using surface-initiated ring-opening metathesis polymerization. Based on the inherited spiropyran properties, the functionalized capillaries were successfully used to photoidentify solvents of different polarity when passing through the microcapillary in continuous flow. In the present study, six different solvents (toluene, tetrahydrofuran, acetone, acetonitrile, ethanol, and methanol) can be easily detected while passing through the modified microcapillary by simply irradiating a portion of it with UV light (365 nm). This converts the closed spiropyran moiety to the open merocyanine form, and as a consequence, the microcapillary gains a distinct color and spectral response depending on the polarity of the solvent. The rate of ring-opening of the spiropyran-polymer brushes coatings has been determined in situ in the presence of different solvents, showing that the coloration rate is also influenced by the solvent polarity and therefore can be used as an additional parameter for solvent sensing.


Assuntos
Benzopiranos/síntese química , Indóis/síntese química , Nitrocompostos/síntese química , Polímeros/síntese química , Benzopiranos/química , Indóis/química , Estrutura Molecular , Nitrocompostos/química , Tamanho da Partícula , Processos Fotoquímicos , Polímeros/química , Solventes/química , Propriedades de Superfície , Raios Ultravioleta
15.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904459

RESUMO

Glucose is an analyte of great importance, both in the clinical and sports fields. Since blood is the gold standard biofluid used for the analytical determination of glucose, there is high interest in finding alternative non-invasive biofluids, such as sweat, for its determination. In this research, we present an alginate-based bead-like biosystem integrated with an enzymatic assay for the determination of glucose in sweat. The system was calibrated and verified in artificial sweat, and a linear calibration range was obtained for glucose of 10-1000 µM. The colorimetric determination was investigated, and the analysis was carried out both in the black and white and in the Red:Green:Blue color code. A limit of detection and quantification of 3.8 µM and 12.7 µM, respectively, were obtained for glucose determination. The biosystem was also applied with real sweat, using a prototype of a microfluidic device platform as a proof of concept. This research demonstrated the potential of alginate hydrogels as scaffolds for the fabrication of biosystems and their possible integration in microfluidic devices. These results are intended to bring awareness of sweat as a complementary tool for standard analytical diagnosis.

16.
Methods Mol Biol ; 2679: 305-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300625

RESUMO

Noninvasive collection of target cells such as circulating tumor cells (CTCs) is crucial for biology and medicine research. Conventional methods of cell collection are often complex, requiring either size-dependent sorting or invasive enzymatic reactions. Here, we show the development of a functional polymer film, which combines the thermoresponsive poly(N-isopropylacrylamide) and the conducting poly(3,4-ethylenedioxythiopene)/poly(styrene sulfonate), and its use for the capture and release of CTCs. When coated onto microfabricated gold electrodes, the proposed polymer films are capable of noninvasively capturing and controllably releasing cells while, at the same time, monitoring these processes with conventional electrical measurements.


Assuntos
Neoplasias , Polímeros , Eletrodos , Poliestirenos
17.
J Clin Med ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762883

RESUMO

Platelet-Rich Plasma (PRP) is an autologous biological product which, due to its regenerative capacity, is currently used in different fields of medicine. This biological treatment has proven to be effective in numerous research studies due to its high content of growth factors released by platelets. However, the current systems used to obtain PRP do not enrich the growth factors and cytokines outside platelets. Considering this, the present work aims to develop a new technique by which all the biomolecules present in plasma are enriched. Thus, a new method based on ultrafiltration has been developed for the obtaining of the novel PRP. By this method, ultrafiltration of the plasma water is carried out using a 3KDa filtering unit. The results showed that the technique was able to concentrate extraplatelet factors, such as IGF-1 and HGF, in contrast with conventional plasmas. Thus, the cultured cells responded with increased viability to this new PRP. These results could provide a new approach to the treatment of injuries requiring regenerative medicine, potentially improving the outcomes of the conventional PRPs.

18.
Biosensors (Basel) ; 13(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887097

RESUMO

In recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial production, and their preparation requires several chemical coating steps, resulting in cumbersome protocols. We have developed a simplified two-step method for generating controlled cell patterns on PMMA, a durable and transparent material frequently employed in the mass manufacturing of microfluidic devices. It involves air plasma and microcontact printing. This approach allows the formation of well-defined cell arrays on PMMA without the need for blocking agents to define the patterns. Patterns of various adherent cell types in dozens of individual cell cultures, allowing the regulation of cell-material and cell-cell interactions, were developed. These cell patterns were integrated into a microfluidic device, and their viability for more than 20 h under controlled flow conditions was demonstrated. This work demonstrated the potential to adapt polymeric cytophobic materials to simple fabrication protocols of cell-based microsystems, leveraging the possibilities for commercialization.


Assuntos
Técnicas Analíticas Microfluídicas , Polimetil Metacrilato , Impressão , Dispositivos Lab-On-A-Chip
19.
J Colloid Interface Sci ; 610: 741-750, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952696

RESUMO

Biocompatible magnetic hydrogels provide a great source of synthetic materials, which facilitate remote stimuli, enabling safer biological and environmental applications. Prominently, the ex situ and in situ magnetic phase integration is used to fabricate magneto-driven hydrogels, exhibiting varied behaviours in aqueous media. Therefore, it is essential to understand their physicochemical properties to target the best material for each application. In this investigation, three different types of magnetic alginate beads were synthesised. First, by direct, ex situ, calcium chloride gelation of a mixture of Fe3O4 nanoparticles with an alginate solution. Second, by in situ synthesis of Fe3O4 nanoparticles inside of the alginate beads and third, by adding an extra protection alginate layer on the in situ synthesised Fe3O4 nanoparticles alginate beads. The three types of magnetic beads were chemically and magnetically characterised. It was found that they exhibited particular stability to different pH and ionic strength conditions in aqueous solution. These are essential properties to be controlled when used for magneto-driven applications such as targeted drug delivery and water purification. Therefore, this fundamental study will direct the path to the selection of the best magnetic bead synthesis protocol according to the defined magneto-driven application.


Assuntos
Alginatos , Hidrogéis , Sistemas de Liberação de Medicamentos , Ácido Glucurônico , Ácidos Hexurônicos , Campos Magnéticos , Magnetismo
20.
Anal Chim Acta ; 1199: 339588, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227387

RESUMO

Low cost and user-friendly paper microfluidic devices, combined with DNA-based biosensors with binding capacities for specific molecules, have been proposed for the developing of novel platforms that ease and speed-up the process of cell secretion monitoring. In this work, we present the first cellulose microfluidic paper-based analytical device for the single-step detection of cell secreted Vascular Endothelial Growth Factor through a self-reporting Structure Switching Signaling Aptamer. A three-part Structure Switching Signaling Aptamer was designed with an aptameric sequence specific for VEGF, which provides a quantifiable fluorescent signal through the displacement of a quencher upon VEGF recognition. The VEGF biosensor was integrated in cellulose paper, enabling the homogenous distribution of the sensor in the paper substrate and the detection of as low as 0.34 ng of VEGF in 30 min through fluorescence intensity analysis. As a proof-of-concept, the biosensor was incorporated in a microfluidic paper-based analytical device format containing a VEGF detection zone and a control zone, which was applied for the detection of cell secreted VEGF in the supernatant of mesenchymal stem cells culture plates, demonstrating its potential use in cell biology research.


Assuntos
Técnicas Biossensoriais , Células-Tronco Mesenquimais , Técnicas Analíticas Microfluídicas , Microfluídica , Papel , Fator A de Crescimento do Endotélio Vascular/análise , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA