Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(2): 883-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730174

RESUMO

Experiments were conducted over a 3-yr period to evaluate the effects of bacterial inoculants on the fermentation profile and aerobic stability of whole-plant corn silage (WPC), snaplage (SNA), and high-moisture corn (HMC). Whole-plant corn was inoculated with Lentilactobacillus buchneri PJB1 in combination with Lactiplantibacillus plantarum MTD1 or with Lpb. plantarum alone (experiments 1 and 2). Snaplage (experiment 3) and HMC (experiments 4 and 5) were inoculated with Len. buchneri in combination with Lpb. plantarum or with Len. buchneri alone. After inoculation, the feedstuffs were ensiled in 7.57-L silos and stored at 21 ± 2°C for 30 or 90 d. In experiment 5, silage was subjected to air stress for 2 h every 2 wk through 42 d and then for 2 h/wk until 90 d and had samples analyzed for their bacterial community composition by metagenomics. Overall, in all experiments, silages inoculated with Len. buchneri alone or in combination with Lpb. plantarum had more acetic acid and 1,2-propanediol and fewer yeasts than uninoculated silages. After 30 d of ensiling, inoculation with Len. buchneri alone or in combination with Lpb. plantarum did not affect the aerobic stability of SNA, but it slightly increased the stability of WPC and markedly improved the stability of HMC. After 90 d of ensiling, inoculation with Len. buchneri alone or in combination with Lpb. plantarum markedly improved the aerobic stability of WPC, SNA, and HMC. In experiment 5, inoculation increased the relative abundance (RA) of Lactobacillaceae and reduced the RA of Enterobacteriaceae and Leuconostocaceae in HMC at 30 and 90 d and the RA of Clostridiaceae in non-air-stressed HMC at 90 d. Air-stressed HMC inoculated with Len. buchneri had less lactic acid, more acetic acid and 1,2-propanediol, and markedly greater aerobic stability than uninoculated air-stressed HMC at 90 d. In conclusion, inoculation with Len. buchneri PJB1 alone or in combination with Lpb. plantarum MTD1 increased the production of acetic acid and 1,2-propanediol, inhibited yeasts development, and improved the aerobic stability of WPC, SNA, and HMC. In HMC, inoculation markedly improved aerobic stability as soon as after 30 d of ensiling, and after 90 d, inoculation improved stability even under air stress conditions.


Assuntos
Lactobacillus plantarum , Lactobacillus , Silagem , Animais , Silagem/análise , Zea mays/microbiologia , Propilenoglicol , Aerobiose , Leveduras , Ácido Acético , Fermentação
2.
J Dairy Sci ; 105(6): 5024-5043, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35465996

RESUMO

Silage inoculants are commonly used as a tool to improve the fermentation and aerobic stability of corn silage fed to dairy cows. However, their effectiveness can be inconsistent. Our objective was to determine the effect of the dry matter (DM) content of freshly chopped whole-plant corn on its microbial community as affected by an inoculant containing Lentilactobacillus hilgardii, Lentilactobacillus buchneri, and Pediococcus pentosaceus on improving the aerobic stability of silage. Whole-plant corn was harvested at low (31.80%, LDM), medium (33.32%, MDM), or high (39.44%, HDM) DM content and treated with nothing (CTR) or an inoculant (INO) containing L. hilgardii CNCM I-4785 at 150,000 cfu/g fresh forage, L. buchneri NCIMB 40788 at 150,000 cfu/g fresh forage, P. pentosaceus NCIMB12455 at 100,000 cfu/g of fresh forage, ß-glucanase (5,750 IU/g), and xylanase (30,000 IU/g) and ensiled for 20 and 60 d. Data were analyzed as a completely randomized design in a 3-by-2 factorial arrangement of treatments. Fresh LDM forage had a higher concentration of reducing sugars, a less rich, diverse, and even bacterial community, and greater relative abundance of Saccharomycetales than MDM and HDM forages. Silages at 20 and 60 d, inoculated LDM had a more modest proliferation of culturable lactic acid bacteria than inoculated MDM. At 20 d, regardless of treatment, LDM had greater concentrations of lactic and acetic acids. Also at 20 d, LDM had lower numbers of culturable yeasts but greater relative abundance of Enterobacteriaceae than MDM and HDM. For silage at 20 d, HDM silage was more aerobically stable than LDM and MDM and inoculation improved aerobic stability 1.8-fold compared with CTR. For silage at 60 d, there was an interaction between DM content and inoculation. The improvements in stability by inoculation, compared with CTR, were greater in MDM (261 vs. 41 h) and HDM (320 vs. 66 h) silages than in LDM (85 vs. 46 h). The lower DM content and possible slower pH decline in LDM might have facilitated the development of undesirable bacteria and coupled with its greater concentration of reducing sugars and lactic and acetic acids, which are substrates for aerobic microorganisms, might explain the more modest improvements in aerobic stability from inoculation in LDM compared with MDM and HDM. Our findings suggest that the DM content of whole-plant corn affected its epiphytic microbial community and the effectiveness of the inoculant, which improved aerobic stability at all DM but to a greater extent in HDM and MDM than in LDM, especially after 60 d of ensiling.


Assuntos
Inoculantes Agrícolas , Microbiota , Aerobiose , Animais , Bactérias , Bovinos , Feminino , Fermentação , Silagem/análise , Açúcares , Zea mays/química
3.
J Dairy Sci ; 104(10): 10678-10698, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34334198

RESUMO

We evaluated the ability of an inoculant containing a combination of Lactobacillus hilgardii and Lactobacillus buchneri to modify the microbiome and improve the aerobic stability of whole-plant corn silage after various lengths of ensiling. Chopped whole-plant corn at about 33% dry matter (DM) was uninoculated (CTR) or inoculated with L. hilgardii CNCM I-4785 and L. buchneri NCIMB 40788 at 200,000 cfu/g of fresh forage weight each (combined application rate of 400,000 cfu of lactic acid bacteria/g of fresh forage weight; LHLB), L. buchneri NCIMB 40788 at 400,000 cfu/g of fresh forage weight and Pediococcus pentosaceus NCIMB 12455 at 100,000 cfu/g of fresh forage weight, used as a positive control (LB500), L. hilgardii CNCM I-4785 at the application rate used in the LHLB formulation of 200,000 cfu/g of fresh forage weight (LH), or L. buchneri NCIMB 40788 at the application rate used in the LHLB formulation of 200,000 cfu/g of fresh forage weight (LB). Silos were opened after 34 and 99 d of ensiling and analyzed for nutrient composition, fermentation profile, microbiome, and aerobic stability. After 34 d of ensiling, the inoculated silages had greater numbers of culturable lactic acid bacteria, a bacterial community less rich and diverse, greater relative abundance of Lactobacillus, lower relative abundance of Klebsiella, and a greater concentration of propionic acid than uninoculated silages. Inoculation decreased the ratio of lactic acid to acetic acid, except for LB alone. Treatment LHLB resulted in silage with a greater concentration of 1,2-propanediol than LB500 and was the only treatment to have a lower relative abundance of Saccharomycetes compared with uninoculated silage. Treatments LHLB and LB500 improved the aerobic stability compared with CTR, but the individual LH and LB treatments applied at a low dose did not. Whereas LB500 was stable 34 h longer than CTR, LHLB was stable 91 h longer. After 99 d of ensiling, all inoculated silages had markedly greater aerobic stability than uninoculated silage and were stable for more than 360 h. The inoculant containing a combination of L. hilgardii and L. buchneri markedly improved the aerobic stability of corn silage after a relatively short period of ensiling, and such improvements were greater than the ones obtained from inoculation with the combination of L. buchneri and P. pentosaceus. Inoculating with the combination of L. hilgardii and L. buchneri may be helpful to producers that must feed silage shortly after ensiling.


Assuntos
Microbiota , Silagem , Aerobiose , Animais , Fermentação , Lactobacillus , Silagem/análise , Zea mays
4.
J Dairy Sci ; 101(7): 5949-5960, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29655557

RESUMO

We evaluated the effectiveness of an additive comprising sodium benzoate, potassium sorbate, and sodium nitrite (SSL) as active ingredients for its ability to improve the aerobic stability of corn silages made in North America. In experiment 1, treatment with SSL (1.5 and 2.0 L/t) on whole-plant corn (WPC) was compared with treatment with an additive containing buffered propionic acid and citric acid (BPA; 2 L/t) on corn harvested at 32 and 38% dry matter and ensiled for 120 d. Silage treated with BPA was higher in ammonia-N and propionic acid relative to other treatments. Treatments with all of the additives had numerically, but not statistically, fewer yeasts compared with untreated silage. Both application rates of SSL resulted in lower concentrations of ethanol compared with untreated and BPA silages. Treatment with BPA improved the aerobic stability of silages compared with untreated silage, but the effect from SSL was markedly greater. In experiment 2, WPC was untreated or treated with 2 or 3 L of SSL/t or a microbial inoculant containing Enterococcus faecium M74, Lactobacillus plantarum CH6072, and Lactobacillus buchneri LN1819 (final total lactic acid bacteria application rate of 150,000 cfu/g of fresh forage). Silages were air stressed for 24 h at 28 and 42 d of storage and ensiled for 49 d before opening. Inoculation had no effect on acid end products, ethanol, number of yeasts, or aerobic stability compared with other treatments. Treatment with SSL decreased the amount of ethanol, had no effect on number of yeasts, and improved aerobic stability in a dose-dependent manner compared with other treatments. In experiment 3, WPC was untreated or treated with 2 L of SSL/t and ensiled for 5, 15, and 30 d. Treatment with SSL resulted in silage with fewer yeasts and lower concentrations of ethanol after all times of ensiling compared with untreated silage. In addition, SSL improved aerobic stability after each period of ensiling, but the effect was more at 15 and 30 d compared with 5 d of storage. Treating WPC with SSL can improve the aerobic stability of corn silage made in North America, and the effect can be observed as soon as 5 d after ensiling.


Assuntos
Fermentação , Silagem , Benzoato de Sódio/administração & dosagem , Nitrito de Sódio/administração & dosagem , Ácido Sórbico/administração & dosagem , Aerobiose , Animais , Sódio , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA