RESUMO
Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
Assuntos
Desenvolvimento Embrionário/genética , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organogênese/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Pulmão/ultraestrutura , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , RNA-Seq , Análise de Célula Única , Transcriptoma/genéticaRESUMO
Lamellar bodies (LBs) are lysosome-related organelles (LROs) of surfactant-producing alveolar type 2 (AT2) cells of the distal lung epithelium. Trafficking pathways to LBs have been understudied but are likely critical to AT2 cell homeostasis given associations between genetic defects of endosome to LRO trafficking and pulmonary fibrosis in Hermansky Pudlak syndrome (HPS). Our prior studies uncovered a role for AP-3, defective in HPS type 2, in trafficking Peroxiredoxin-6 to LBs. We now show that the P4-type ATPase ATP8A1 is sorted by AP-3 from early endosomes to LBs through recognition of a C-terminal dileucine-based signal. Disruption of the AP-3/ATP8A1 interaction causes ATP8A1 accumulation in early sorting and/or recycling endosomes, enhancing phosphatidylserine exposure on the cytosolic leaflet. This in turn promotes activation of Yes-activating protein, a transcriptional coactivator, augmenting cell migration and AT2 cell numbers. Together, these studies illuminate a mechanism whereby loss of AP-3-mediated trafficking contributes to a toxic gain-of-function that results in enhanced and sustained activation of a repair pathway associated with pulmonary fibrosis.
Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Células Epiteliais Alveolares/metabolismo , Síndrome de Hermanski-Pudlak/genética , Proteínas de Transferência de Fosfolipídeos/genética , Fibrose Pulmonar/genética , Fatores de Transcrição/genética , Complexo 3 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Transporte Biológico , Linhagem Celular , Movimento Celular , Modelos Animais de Doenças , Endossomos/metabolismo , Feminino , Regulação da Expressão Gênica , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cultura Primária de Células , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/ß-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Assuntos
Células Epiteliais Alveolares/metabolismo , Fibroblastos/metabolismo , Hiperóxia/genética , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Wnt-5a/genética , Animais , Displasia Broncopulmonar , Técnicas de Cocultura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hiperóxia/metabolismo , Hibridização In Situ , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Microscopia Confocal , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase em Tempo Real , Sulfonas/farmacologia , Proteína Wnt-5a/efeitos dos fármacos , Proteína Wnt-5a/metabolismoRESUMO
Maternal infection-induced early pregnancy complications arise from perturbation of the immune environment at the uterine early blastocyst implantation site (EBIS), yet the underlying mechanisms remain unclear. Here, we demonstrated in a mouse model that the progression of normal pregnancy from days 4 to 6 induced steady migration of leukocytes away from the uterine decidual stromal zone (DSZ) that surrounds the implanted blastocyst. Uterine macrophages were found to be CD206+ M2-polarized. While monocytes were nearly absent in the DSZ, DSZ cells were found to express monocyte marker protein Ly6C. Systemic endotoxic lipopolysaccharide (LPS) exposure on day 5 of pregnancy led to: (1) rapid (at 2 h) induction of neutrophil chemoattractants that promoted huge neutrophil infiltrations at the EBISs by 24 h; (2) rapid (at 2 h) elevation of mRNA levels of MyD88, but not Trif, modulated cytokines at the EBISs; and (3) dose-dependent EBIS defects by day 7 of pregnancy. Yet, elimination of maternal neutrophils using anti-Ly6G antibody prior to LPS exposure failed to avert LPS-induced EBIS defects allowing us to suggest that activation of Tlr4-MyD88 dependent inflammatory pathway is involved in LPS-induced defects at EBISs. Thus, blocking the activation of the Tlr4-MyD88 signaling pathway may be an interesting approach to prevent infection-induced pathology at EBISs.
Assuntos
Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Complicações Infecciosas na Gravidez/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Implantação do Embrião , Feminino , Inflamação , Macrófagos , Camundongos , Neutrófilos/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/metabolismoRESUMO
Sepsis disproportionately affects the very old and the very young. IL-1 signaling is important in innate host defense but may also play a deleterious role in acute inflammatory conditions (including sepsis) by promulgating life-threatening inflammation. IL-1 signaling is mediated by two distinct ligands: IL-1α and IL-1ß, both acting on a common receptor (IL-1R1). IL-1R1 targeting has not reduced adult human sepsis mortality despite biologic plausibility. Because the specific role of IL-1α or IL-1ß in sepsis survival is unknown in any age group and the role of IL-1 signaling remains unknown in neonates, we studied the role of IL-1 signaling, including the impact of IL-1α and IL-1ß, on neonatal murine sepsis survival. IL-1 signaling augments the late plasma inflammatory response to sepsis. IL-1α and not IL-1ß is the critical mediator of sepsis mortality, likely because of paracrine actions within the tissue. These data do not support targeting IL-1 signaling in neonates.
Assuntos
Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Sepse/imunologia , Animais , Animais Recém-Nascidos , Feminino , Humanos , Recém-Nascido , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/mortalidade , Transdução de Sinais/imunologiaRESUMO
Wnt/ß-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of ß-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of ß-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence colocalization demonstrated a consistent pattern of elevated nuclear phosphorylated ß-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear ß-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed ß-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of ß-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that ß-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.
Assuntos
Displasia Broncopulmonar/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , beta Catenina/metabolismo , Células A549 , Adulto , Animais , Animais Recém-Nascidos , Proteína Axina/metabolismo , Displasia Broncopulmonar/patologia , Núcleo Celular/metabolismo , Células Epiteliais/metabolismo , Feminino , Feto/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Gravidez , Segundo Trimestre da Gravidez , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Tirosina/metabolismoRESUMO
Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18-null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G(+) myeloid cells, and blocking IL-17A reduced IL-18-potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18-mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis.
Assuntos
Interleucina-17/antagonistas & inibidores , Interleucina-17/imunologia , Interleucina-18/imunologia , Sepse Neonatal/imunologia , Sepse Neonatal/terapia , Taxa de Sobrevida , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Sepse Neonatal/patologia , Resultado do TratamentoRESUMO
Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.
Assuntos
Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Lesão Pulmonar/patologia , Pulmão/patologia , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Humanos , FenótipoRESUMO
Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR-/- mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR-/- mice compared with wild-type controls. This increase in neutrophils in pIgR-/- mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR-/- mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.
Assuntos
Remodelação das Vias Aéreas/fisiologia , Neutrófilos/patologia , Pneumonia Bacteriana/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Bacillus/patogenicidade , Benzamidas/farmacologia , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neutrófilos/microbiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/patologia , Receptores de Superfície Celular/genéticaRESUMO
BACKGROUND: Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. METHODS: We used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo. RESULTS: In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors. CONCLUSIONS: We speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth.
Assuntos
Betametasona/uso terapêutico , Permeabilidade do Canal Arterial/tratamento farmacológico , Canal Arterial/efeitos dos fármacos , Animais , Ecocardiografia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Recém-Nascido Prematuro , Exposição Materna , Camundongos , Oxigênio/metabolismo , Papio , Reação em Cadeia da Polimerase , Prostaglandinas/metabolismoRESUMO
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4â months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Assuntos
Células Epiteliais/metabolismo , Integrina beta1/metabolismo , Pulmão/embriologia , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Animais , Lavagem Broncoalveolar , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quimiocina CCL2/metabolismo , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Integrases/metabolismo , Camundongos , Microscopia Confocal , Proteína C Associada a Surfactante Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido TiobarbitúricoRESUMO
The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase ß transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase ß transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.
Assuntos
Elastina/metabolismo , Epitélio/metabolismo , Inflamação/complicações , Pulmão/embriologia , Animais , Western Blotting , Desenvolvimento Fetal , Humanos , Imuno-Histoquímica , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Animais , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo RealAssuntos
Biomarcadores/sangue , Displasia Broncopulmonar/sangue , Displasia Broncopulmonar/diagnóstico , Recém-Nascido de Baixo Peso , Receptor para Produtos Finais de Glicação Avançada/sangue , Displasia Broncopulmonar/fisiopatologia , California , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Fatores de RiscoRESUMO
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections in young infants. It is an enveloped, single-stranded, nonsegmented, negative-strand RNA virus, a member of the family Pneumoviridae. Globally, RSV is responsible for 2.3% of deaths among neonates 0-27 days of age. Respiratory syncytial virus infection is most common in children aged below 24 months. Neonates present with cough and fever. Respiratory syncytial virus-associated wheezing is seen in 20% infants during the first year of life of which 2-3% require hospitalization. Reverse transcriptase polymerase chain reaction (RT-PCR) gives fast results and has higher sensitivity compared with culture and rapid antigen tests and are not affected by passively administered antibody to RSV. Therapy for RSV infection of the LRT is mainly supportive, and preventive measures like good hygiene and isolation are the mainstay of management. Standard precautions, hand hygiene, breastfeeding and contact isolation should be followed for RSV-infected newborns. Recent AAP guidelines do not recommend pavilizumab prophylaxis for preterm infants born at 29-35 weeks without chronic lung disease, hemodynamically significant congenital heart disease and coexisting conditions. RSV can lead to long-term sequelae such as wheezing and asthma, associated with increased healthcare costs and reduced quality of life.
RESUMO
During alveolar repair, alveolar type 2 (AT2) epithelial cell progenitors rapidly proliferate and differentiate into flat AT1 epithelial cells. Failure of normal alveolar repair mechanisms can lead to loss of alveolar structure (emphysema) or development of fibrosis, depending on the type and severity of injury. To test if ß1-containing integrins are required during repair following acute injury, we administered E. coli lipopolysaccharide (LPS) by intratracheal injection to mice with a postdevelopmental deletion of ß1 integrin in AT2 cells. While control mice recovered from LPS injury without structural abnormalities, ß1-deficient mice had more severe inflammation and developed emphysema. In addition, recovering alveoli were repopulated with an abundance of rounded epithelial cells coexpressing AT2 epithelial, AT1 epithelial, and mixed intermediate cell state markers, with few mature type 1 cells. AT2 cells deficient in ß1 showed persistently increased proliferation after injury, which was blocked by inhibiting NF-κB activation in these cells. Lineage tracing experiments revealed that ß1-deficient AT2 cells failed to differentiate into mature AT1 epithelial cells. Together, these findings demonstrate that functional alveolar repair after injury with terminal alveolar epithelial differentiation requires ß1-containing integrins.
Assuntos
Enfisema , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Escherichia coli , Pulmão , IntegrinasRESUMO
Bronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial-mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood. In this study we found that soluble inflammatory mediators present in tracheal fluid from preterm infants can prevent saccular airway branching. In addition, LPS treatment led to local production of mediators that inhibited airway branching and FGF-10 expression in LPS-resistant C.C3-Tlr4(Lpsd)/J fetal mouse lung explants. Both direct NF-κB activation and inflammatory cytokines (IL-1ß and TNF-α) that activate NF-κB reduced FGF-10 expression, whereas chemokines that signal via other inflammatory pathways had no effect. Mutational analysis of the FGF-10 promoter failed to identify genetic elements required for direct NF-κB-mediated FGF-10 inhibition. Instead, NF-κB activation appeared to interfere with the normal stimulation of FGF-10 expression by Sp1. Chromatin immunoprecipitation and nuclear coimmunoprecipitation studies demonstrated that the RelA subunit of NF-κB and Sp1 physically interact at the FGF-10 promoter. These findings indicate that inflammatory signaling through NF-κB disrupts the normal expression of FGF-10 in fetal lung mesenchyme by interfering with the transcriptional machinery critical for lung morphogenesis.
Assuntos
Fator 10 de Crescimento de Fibroblastos/biossíntese , Pulmão/embriologia , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Animais , Corioamnionite/metabolismo , Imunoprecipitação da Cromatina , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoprecipitação , Recém-Nascido , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Nascimento Prematuro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de SinaisRESUMO
This pilot investigation assesses whether barriers to children's healthy eating and physical activity reported by parents on a newly developed brief pediatric obesity screening and counseling tool are related to healthy eating and physical activity behaviors. The sample included parents of 115 Medicaid-enrolled children in a general pediatric clinic. Of 10 barriers, 7 were statistically associated with parent-reported behaviors with odds ratios (ORs) ranging from 0.6 to 9.4. Relationships remained significant when child characteristics were controlled in the analysis. Although additional testing is needed, the tool provides clinicians with an approach to identify barriers and behaviors for targeted counseling.
Assuntos
Comportamento Infantil , Dieta , Comportamentos Relacionados com a Saúde , Programas de Rastreamento/instrumentação , Atividade Motora , Obesidade/prevenção & controle , Criança , Pré-Escolar , Aconselhamento Diretivo , Feminino , Humanos , Masculino , Relações Pais-Filho , Projetos PilotoRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) novel coronavirus 2019 (COVID-19) global pandemic has led to millions of cases and hundreds of thousands of deaths. While older adults appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of developing mouse lung with temporally resolved immunofluorescence in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases detected SARS-CoV-2 RNA most frequently in ciliated and secretory cells in airway epithelium and AT1 cells in peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in lung epithelium and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.
Assuntos
Células Epiteliais Alveolares/enzimologia , COVID-19/enzimologia , COVID-19/metabolismo , Regulação Enzimológica da Expressão Gênica , SARS-CoV-2/metabolismo , Serina Endopeptidases/biossíntese , Adulto , Envelhecimento , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/patologia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino , CamundongosRESUMO
Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage (P3-P5) but not alveolar stage (P10-P12) of lung development disrupted elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progressed through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation downregulated elastin and fibulin-5 expression by saccular-stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. Although neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early-life predisposition to COPD.