Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(18): 9553-9563, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020973

RESUMO

The ability to control the interparticle distance in self-assembled arrays of nanoparticles plays an important role in a large number of applications, which require tunable electronic and photonic properties. Importantly, practical applications in real devices rely on arrays satisfying more stringent requirements of lateral homogeneity controlled over a large scale. Herein, the interparticle distance in ordered nanoparticle assemblies was controlled by varying the nanoparticle effective size via the molecular chemical nature and chain length of the ligand. Iron oxide nanoparticles (IONPs) were functionalized by three types of ligands, namely (i) a mixture of oleic acid/oleylamine (OA/OAm), (ii) poly(n-butyl acrylate) (PBA) and (iii) polystyrene (PS), while two different molar masses of PBA and PS were used. The polymeric ligands with narrow dispersity and bearing phosphonic chain-end groups were prepared by atom transfer radical polymerization. Functionalization of the IONPs with polymeric ligands was achieved using a ligand exchange method. Both the hydrodynamic diameter and size distribution of the nanoparticles in colloidal solution were determined by dynamic light scattering (DLS). The mean interparticle distances in Langmuir-Schaefer monolayers prepared on solid substrates were assessed by means of the pair correlation function calculated from the atomic force microscopy (AFM) images. Furthermore, the lateral ordering, homogeneity, and interparticle distances averaged over a mesoscopic scale of the ordered monolayers were studied by the grazing-incidence small-angle X-ray scattering (GISAXS) technique. We demonstrate that the (nanoparticle) centre-to-centre distance in the ordered assemblies constituted by the IONPs with the core diameter of about 6 nm can be varied from 7.6 to about 12 nm with the resulting interparticle gap change by a factor of about 4.

2.
Langmuir ; 28(28): 10409-14, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22724517

RESUMO

We report on an in-situ observation of the colloidal silver nanoparticle self-assembly into a close-packed monolayer at the air/water interface followed by a 2D to 3D transition. Using the fast tracking GISAXS technique, we were able to observe the immediate response to the compression of the self-assembled nanoparticle layer at the air/water interface and to identify all relevant intermediate stages including those far from the equilibrium. In particular, a new nonequilibrium phase before the monolayer collapse via the 2D to 3D transition was found that is inaccessible by the competing direct space imaging techniques such as the scanning and transmission electron microscopies due to the high water vapor pressure and surface tension.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Ar , Coloides/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
3.
Biomater Sci ; 8(7): 1973-1980, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32065173

RESUMO

We evaluate the application of surfactant-free liquid-phase exfoliated MoS2 nanosheets as a nanoplatform for a cancer detection and treatment system equipped with an antibody-antigen based recognition element. Employing antigen-antibody binding, we increased the probability of the endocytosis of MoS2 nanosheets into CAIX expressing cells by 30%. The nanosheets are functionalized with a specific antibody M75, which forms an antigen-antibody complex with CAIX. The bioconjugation of MoS2 nanosheets involves biocompatible components with low cytotoxicity, verified in the tested cell lines by fluorescence-based cell viability assay. The cellular internalization is quantified by flow cytometry, while the internalization is confirmed by label-free confocal Raman imaging. Raman measurements show increased lysosomal activity in the proximity of the internalized nanoplatforms.


Assuntos
Anticorpos Monoclonais/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Dissulfetos/química , Molibdênio/química , Neoplasias/metabolismo , Anticorpos Monoclonais/química , Antígenos de Neoplasias , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Nanoestruturas
4.
J Phys Chem Lett ; 8(10): 2339-2343, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28460170

RESUMO

The formation of self-assembled monolayers on surfaces is often likely to be accompanied by the formation of byproducts, whose identification holds clues to the reaction mechanism but is difficult due to the minute amounts produced. We now report a successful identification of self-assembly byproducts using gold aerogel with a large specific surface area, a procedure likely to be applicable generally. Like a thin gold layer on a flat substrate, the aerogel surface is alkylated with n-butyl-d9 groups upon treatment with a solution of tetra-n-butylstannane-d36 under ambient conditions. The reaction byproducts accumulate in the mother liquor in amounts sufficient for GC-MS analysis. In chloroform solvent, they are butene-d8, butane-d10, octane-d18, and tributylchlorostannane-d27. In hexane, they are the same except that tributylchlorostannane-d27 is replaced with hexabutyldistannane-d54. The results are compatible with an initial homolytic dissociation of a C-Sn bond on the gold surface, followed by known radical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA