Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716276

RESUMO

Gram-negative bacteria are surrounded by a protective outer membrane (OM) with phospholipids in its inner leaflet and lipopolysaccharides (LPS) in its outer leaflet. The OM is also populated with many ß-barrel outer-membrane proteins (OMPs), some of which have been shown to cluster into supramolecular assemblies. However, it remains unknown how abundant OMPs are organized across the entire bacterial surface and how this relates to the lipids in the membrane. Here, we reveal how the OM is organized from molecular to cellular length scales, using atomic force microscopy to visualize the OM of live bacteria, including engineered Escherichia coli strains and complemented by specific labeling of abundant OMPs. We find that a predominant OMP in the E. coli OM, the porin OmpF, forms a near-static network across the surface, which is interspersed with barren patches of LPS that grow and merge with other patches during cell elongation. Embedded within the porin network is OmpA, which forms noncovalent interactions to the underlying cell wall. When the OM is destabilized by mislocalization of phospholipids to the outer leaflet, a new phase appears, correlating with bacterial sensitivity to harsh environments. We conclude that the OM is a mosaic of phase-separated LPS-rich and OMP-rich regions, the maintenance of which is essential to the integrity of the membrane and hence to the lifestyle of a gram-negative bacterium.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Condensados Biomoleculares/fisiologia , Membrana Externa Bacteriana/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Porinas/metabolismo
2.
PLoS Pathog ; 16(6): e1008606, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569291

RESUMO

An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing.


Assuntos
Atividade Bactericida do Sangue , Membrana Celular/metabolismo , Parede Celular/metabolismo , Complemento C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Escherichia coli/metabolismo , Proteínas do Sistema Complemento/metabolismo , Células HEK293 , Humanos
3.
Analyst ; 144(23): 6944-6952, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31620716

RESUMO

Atomic force microscopy (AFM) provides an effective, label-free technique enabling the imaging of live bacteria under physiological conditions with nanometre precision. However, AFM is a surface scanning technique, and the accuracy of its performance requires the effective and reliable immobilisation of bacterial cells onto substrates. Here, we compare the effectiveness of various chemical approaches to facilitate the immobilisation of Escherichia coli onto glass cover slips in terms of bacterial adsorption, viability and compatibility with correlative imaging by fluorescence microscopy. We assess surface functionalisation using gelatin, poly-l-lysine, Cell-Tak™, and Vectabond®. We describe how bacterial immobilisation, viability and suitability for AFM experiments depend on bacterial strain, buffer conditions and surface functionalisation. We demonstrate the use of such immobilisation by AFM images that resolve the porin lattice on the bacterial surface; local degradation of the bacterial cell envelope by an antimicrobial peptide (Cecropin B); and the formation of membrane attack complexes on the bacterial membrane.


Assuntos
Células Imobilizadas/ultraestrutura , Escherichia coli/ultraestrutura , Microscopia de Força Atômica/métodos , Soluções Tampão , Adesão Celular , Membrana Celular/metabolismo , Gelatina/química , Polilisina/química , Porinas/metabolismo , Propilaminas/química , Silanos/química
4.
Sci Adv ; 8(44): eadc9566, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322653

RESUMO

ß Barrel outer membrane proteins (OMPs) cluster into supramolecular assemblies that give function to the outer membrane (OM) of Gram-negative bacteria. How such assemblies form is unknown. Here, through photoactivatable cross-linking into the Escherichia coli OM, coupled with simulations, and biochemical and biophysical analysis, we uncover the basis for OMP clustering in vivo. OMPs are typically surrounded by an annular shell of asymmetric lipids that mediate higher-order complexes with neighboring OMPs. OMP assemblies center on the abundant porins OmpF and OmpC, against which low-abundance monomeric ß barrels, such as TonB-dependent transporters, are packed. Our study reveals OMP-lipid-OMP complexes to be the basic unit of supramolecular OMP assembly that, by extending across the entire cell surface, couples the requisite multifunctionality of the OM to its stability and impermeability.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Lipídeos
5.
Methods Mol Biol ; 2208: 225-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32856266

RESUMO

Recent advances in biomolecular design require accurate measurements performed in native or near-native environments in real time. Atomic force microscopy (AFM) is a powerful tool to observe the dynamics of biologically relevant processes at aqueous interfaces with high spatial resolution. Here, we describe imaging protocols to characterize the effects of peptide materials on phospholipid membranes in solution by AFM. These protocols can be used to determine the mechanism and kinetics of membrane-associated activities at the nanoscale.


Assuntos
Membranas/química , Microscopia de Força Atômica/métodos , Peptídeos/química , Fosfolipídeos/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA