Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 50(4): 1033-1042.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926232

RESUMO

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases.


Assuntos
Coagulação Sanguínea/fisiologia , Sistema Imunitário/imunologia , Interleucina-1alfa/fisiologia , Trombina/fisiologia , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Plaquetas/metabolismo , Humanos , Imunidade Inata , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Queratinócitos/metabolismo , Macrófagos/metabolismo , Mamíferos/imunologia , Camundongos , Precursores de Proteínas/metabolismo , Seleção Genética , Sepse/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trombopoese/imunologia , Cicatrização/imunologia
2.
Circ Res ; 128(4): 474-491, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33353368

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear. OBJECTIVE: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis. METHODS AND RESULTS: SIRT6 protein, but not mRNA, expression was markedly reduced in VSMCs in human and mouse atherosclerotic plaques, and in human VSMCs derived from plaques or undergoing replicative or palmitate-induced senescence versus healthy aortic VSMCs. The ubiquitin ligase CHIP (C terminus of HSC70-interacting protein) promoted SIRT6 stability, but CHIP expression was reduced in human and mouse plaque VSMCs and by palmitate in a p38- and c-Jun N-terminal kinase-dependent manner. SIRT6 bound to telomeres, while SIRT6 inhibition using shRNA or a deacetylase-inactive mutant (SIRT6H133Y) shortened human VSMC lifespan and induced senescence, associated with telomeric H3K9 (histone H3 lysine 9) hyperacetylation and 53BP1 (p53 binding protein 1) binding, indicative of telomere damage. In contrast, SIRT6 overexpression preserved telomere integrity, delayed cellular senescence, and reduced inflammatory cytokine expression and changes in VSMC metabolism associated with senescence. SIRT6, but not SIRT6H133Y, promoted proliferation and lifespan of mouse VSMCs, and prevented senescence-associated metabolic changes. ApoE-/- (apolipoprotein E) mice were generated that overexpress SIRT6 or SIRT6H133Y in VSMCs only. SM22α-hSIRT6/ApoE-/- mice had reduced atherosclerosis, markers of senescence and inflammation compared with littermate controls, while plaques of SM22α-hSIRT6H133Y/ApoE-/- mice showed increased features of plaque instability. CONCLUSIONS: SIRT6 protein expression is reduced in human and mouse plaque VSMCs and is positively regulated by CHIP. SIRT6 regulates telomere maintenance and VSMC lifespan and inhibits atherogenesis, all dependent on its deacetylase activity. Our data show that endogenous SIRT6 deacetylase is an important and unrecognized inhibitor of VSMC senescence and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Senescência Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sirtuínas/metabolismo , Animais , Aorta/citologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Citocinas/metabolismo , Histonas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Sirtuínas/genética , Homeostase do Telômero , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Inorg Chem ; 62(23): 8846-8862, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37254744

RESUMO

Treatment of the bis(chelate) complexes trans-[M(κ2-2-C6F4PPh2)2] (trans-1M; M = Ni, Pt) and cis-[Pt(κ2-2-C6F4PPh2)2] (cis-1Pt) with equimolar amounts or excess of PMe3 solution gave complexes of the type [(Me3P)xM(2-C6F4PPh2)2] (x = 2: 2Ma, 2Mb x = 1: 3Ma, 3Mb; M = Ni, Pt). The reactivity of complexes of the type 2M and 3M toward monovalent coinage metal ions (M' = Cu, Ag, Au) was investigated next to the reaction of 1M toward [AuCl(PMe3)]. Four different complex types [(Me3P)2M(µ-2-C6F4PPh2)2M'Cl] (5MM'; M = Ni, Pt; M' = Cu, Ag, Au), [(Me3P)M(κ2-2-C6F4PPh2)(µ-2-C6F4PPh2)M'Cl]x (x = 1: 6MM'; M = Pt; M' = Cu, Au; x = 2: 6PtAg), head-to-tail-[(Me3P)ClM(µ-2-C6F4PPh2)2M'] (7MM'; M = Ni, Pt; M' = Au), and head-to-head-[(Me3P)ClM(µ-2-C6F4PPh2)2M'] (8MM'; M = Ni, Pt; M' = Cu, Ag, Au) were observed. Single-crystal X-ray analyses of complexes 5-8 revealed short metal-metal separations (2.7124(3)-3.3287(7) Å), suggestive of attractive metal-metal interactions. Quantum chemical calculations (atoms in molecules (AIM), electron localization function (ELF), non-covalent interaction (NCI), and natural bond orbital (NBO)) gave theoretical support that the interaction characteristics reach from a pure attractive non-covalent to an electron-shared (covalent) character.

4.
Immunity ; 38(2): 285-95, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23395675

RESUMO

Necrosis can induce profound inflammation or be clinically silent. However, the mechanisms underlying such tissue specificity are unknown. Interleukin-1α (IL-1α) is a key danger signal released upon necrosis that exerts effects on both innate and adaptive immunity and is considered to be constitutively active. In contrast, we have shown that necrosis-induced IL-1α activity is tightly controlled in a cell type-specific manner. Most cell types examined expressed a cytosolic IL-1 receptor 2 (IL-1R2) whose binding to pro-IL-1α inhibited its cytokine activity. In cell types exhibiting a silent necrotic phenotype, IL-1R2 remained associated with pro-IL-1α. Cell types possessing inflammatory necrotic phenotypes either lacked IL-1R2 or had activated caspase-1 before necrosis, which degraded and dissociated IL-1R2 from pro-IL-1α. Full IL-1α activity required cleavage by calpain after necrosis, which increased its affinity for IL-1 receptor 1. Thus, we report a cell type-dependent process that fundamentally governs IL-1α activity postnecrosis and the mechanism allowing conditional release of this blockade.


Assuntos
Inflamação/metabolismo , Interleucina-1alfa/genética , Necrose/metabolismo , Precursores de Proteínas/genética , Receptores Tipo II de Interleucina-1/genética , Animais , Calpaína/genética , Calpaína/imunologia , Caspase 1/genética , Caspase 1/imunologia , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-1alfa/imunologia , Interleucina-1alfa/metabolismo , Camundongos , Necrose/genética , Necrose/imunologia , Especificidade de Órgãos , Ligação Proteica , Precursores de Proteínas/imunologia , Precursores de Proteínas/metabolismo , Proteólise , Receptores Tipo II de Interleucina-1/imunologia , Receptores Tipo II de Interleucina-1/metabolismo , Transdução de Sinais
5.
J Biomech Eng ; 144(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274123

RESUMO

Fiber structures and pathological features, e.g., inflammation and glycosaminoglycan (GAG) deposition, are the primary determinants of aortic mechanical properties which are associated with the development of an aneurysm. This study is designed to quantify the association of tissue ultimate strength and extensibility with the structural percentage of different components, in particular, GAG, and local fiber orientation. Thoracic aortic aneurysm (TAA) tissues from eight patients were collected. Ninety-six tissue strips of thickened intima, media, and adventitia were prepared for uni-extension tests and histopathological examination. Area ratios of collagen, elastin, macrophage and GAG, and collagen fiber dispersion were quantified. Collagen, elastin, and GAG were layer-dependent and the inflammatory burden in all layers was low. The local GAG ratio was negatively associated with the collagen ratio (r2 = 0.173, p < 0.05), but positively with elastin (r2 = 0.037, p < 0.05). Higher GAG deposition resulted in larger local collagen fiber dispersion in the media and adventitia, but not in the intima. The ultimate stretch in both axial and circumferential directions was exclusively associated with elastin ratio (axial: r2 = 0.186, p = 0.04; circumferential: r2 = 0.175, p = 0.04). Multivariate analysis showed that collagen and GAG contents were both associated with ultimate strength in the circumferential direction, but not with the axial direction (collagen: slope = 27.3, GAG: slope = -18.4, r2 = 0.438, p = 0.002). GAG may play important roles in TAA material strength. Their deposition was found to be associated positively with the local collagen fiber dispersion and negatively with ultimate strength in the circumferential direction.


Assuntos
Aneurisma da Aorta Torácica , Elastina , Fenômenos Biomecânicos , Colágeno , Glicosaminoglicanos , Humanos , Macrófagos
6.
Australas J Dermatol ; 63(1): e60-e62, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34817070

RESUMO

Children with erythropoietic porphyria are generally under the care of paediatric dermatologists. When these children undergo major surgery, they are at risk of unusual complications due to their photosensitivity. Dermatologists may be consulted prior to surgery for advice. We describe a case of a child with erythropoietic porphyria undergoing open heart surgery, utilising an exchange transfusion alongside other strategies to minimise the risk of photosensitivity-induced haemolysis.


Assuntos
Ponte Cardiopulmonar , Transfusão Total , Protoporfiria Eritropoética/complicações , Pré-Escolar , Hemólise , Humanos , Iluminação/efeitos adversos , Masculino , Transtornos de Fotossensibilidade/etiologia
7.
Eur J Immunol ; 50(11): 1663-1675, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32447774

RESUMO

IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1ß are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL-1α after ligation of TLRs. Pro-IL-1α tethers to the plasma membrane in part through IL-1R2 or via association with a glycosylphosphatidylinositol-anchored protein, and can be cleaved, activated, and released by proteases. csIL-1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN-γ, independent of expression level. We also reveal how prior csIL-1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent-associated secretory phenotype via csIL-1α, but rather via soluble IL-1α. We believe these data are important for determining the local or systemic context in which IL-1α can contribute to disease and/or physiological processes.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Interferon gama/metabolismo , Interleucina-1alfa/metabolismo , Receptores Tipo II de Interleucina-1/metabolismo , Animais , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
8.
BMC Cardiovasc Disord ; 21(1): 223, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932990

RESUMO

BACKGROUND: Incretin therapies appear to provide cardioprotection and improve cardiovascular outcomes in patients with diabetes, but the mechanism of this effect remains elusive. We have previously shown that glucagon-like peptide (GLP)-1 is a coronary vasodilator and we sought to investigate if this is an adenosine-mediated effect. METHODS: We recruited 41 patients having percutaneous coronary intervention (PCI) for stable angina and allocated them into four groups administering a specific study-related infusion following successful PCI: GLP-1 infusion (Group G) (n = 10); Placebo, normal saline infusion (Group P) (n = 11); GLP-1 + Theophylline infusion (Group GT) (n = 10); and Theophylline infusion (Group T) (n = 10). A pressure wire assessment of coronary distal pressure and flow velocity (thermodilution transit time-Tmn) at rest and hyperaemia was performed after PCI and repeated following the study infusion to derive basal and index of microvascular resistance (BMR and IMR). RESULTS: There were no significant differences in the demographics of patients recruited to our study. Most of the patients were not diabetic. GLP-1 caused significant reduction of resting Tmn that was not attenuated by theophylline: mean delta Tmn (SD) group G - 0.23 s (0.27) versus group GT - 0.18 s (0.37), p = 0.65. Theophylline alone (group T) did not significantly alter resting flow velocity compared to group GT: delta Tmn in group T 0.04 s (0.15), p = 0.30. The resulting decrease in BMR observed in group G persisted in group GT: - 20.83 mmHg s (24.54 vs. - 21.20 mmHg s (30.41), p = 0.97. GLP-1 did not increase circulating adenosine levels in group GT more than group T: delta median adenosine - 2.0 ng/ml (- 117.1, 14.8) versus - 0.5 ng/ml (- 19.6, 9.4); p = 0.60. CONCLUSION: The vasodilatory effect of GLP-1 is not abolished by theophylline and GLP-1 does not increase adenosine levels, indicating an adenosine-independent mechanism of GLP-1 coronary vasodilatation. TRIAL REGISTRATION: The local research ethics committee approved the study (National Research Ethics Service-NRES Committee, East of England): REC reference 14/EE/0018. The study was performed according to institutional guidelines, was registered on http://www.clinicaltrials.gov (unique identifier: NCT03502083) and the study conformed to the principles outlined in the Declaration of Helsinki.


Assuntos
Adenosina/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Transdução de Sinais , Teofilina/administração & dosagem
9.
Apoptosis ; 25(9-10): 648-662, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627119

RESUMO

Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.


Assuntos
Apoptose/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interleucina-6/genética , Receptor fas/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Proliferação de Células/genética , Células Cultivadas , Citocinas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , MAP Quinase Quinase 4/genética , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Proteína Oncogênica v-akt/genética , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30943775

RESUMO

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Assuntos
Aneurisma Aórtico/patologia , Dissecção Aórtica/patologia , Autofagia , Plasticidade Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Adulto , Idoso , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
11.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434493

RESUMO

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Assuntos
Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Desmetilação , Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo
12.
Eur Heart J ; 40(18): 1411-1422, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30907406

RESUMO

AIMS: The focal distribution of atherosclerotic plaques suggests that local biomechanical factors may influence plaque development. METHODS AND RESULTS: We studied 40 patients at baseline and over 12 months by virtual-histology intravascular ultrasound and bi-plane coronary angiography. We calculated plaque structural stress (PSS), defined as the mean of the maximum principal stress at the peri-luminal region, and wall shear stress (WSS), defined as the parallel frictional force exerted by blood flow on the endothelial surface, in areas undergoing progression or regression. Changes in plaque area, plaque burden (PB), necrotic core (NC), fibrous tissue (FT), fibrofatty tissue, and dense calcium were calculated for each co-registered frame. A total of 4029 co-registered frames were generated. In areas with progression, high PSS was associated with larger increases in NC and small increases in FT vs. low PSS (difference in ΔNC: 0.24 ± 0.06 mm2; P < 0.0001, difference in ΔFT: -0.15 ± 0.08 mm2; P = 0.049). In areas with regression, high PSS was associated with increased NC and decreased FT (difference in ΔNC: 0.15 ± 0.04; P = 0.0005, difference in ΔFT: -0.31 ± 0.06 mm2; P < 0.0001). Low WSS was associated with increased PB vs. high WSS in areas with progression (difference in ΔPB: 3.3 ± 0.4%; P < 0.001) with a similar pattern observed in areas with regression (difference in ΔPB: 1.2 ± 0.4%; P = 0.004). Plaque structural stress and WSS were largely independent of each other (R2 = 0.002; P = 0.001). CONCLUSION: Areas with high PSS are associated with compositional changes consistent with increased plaque vulnerability. Areas with low WSS are associated with more plaque growth in areas that progress and less plaque loss in areas that regress. The interplay of PSS and WSS may govern important changes in plaque size and composition.


Assuntos
Vasos Coronários/patologia , Hemodinâmica/fisiologia , Placa Aterosclerótica/diagnóstico por imagem , Ultrassonografia de Intervenção/instrumentação , Fenômenos Biomecânicos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/fisiopatologia , Progressão da Doença , Humanos , Necrose/patologia , Estresse Mecânico
13.
Annu Rev Physiol ; 78: 45-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26442438

RESUMO

DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Doenças Vasculares/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Dano ao DNA/genética , Reparo do DNA/genética , DNA Mitocondrial/genética , Humanos , Músculo Liso Vascular/fisiologia , Doenças Vasculares/patologia
14.
Circulation ; 138(14): 1446-1462, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29643057

RESUMO

BACKGROUND: Atherosclerotic plaques demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine (8oxoG) lesions. 8oxoG is repaired by base excision repair enzymes; however, the mechanisms regulating 8oxoG accumulation in vascular smooth muscle cells (VSMCs) and its effects on their function and in atherosclerosis are unknown. METHODS: We studied levels of 8oxoG and its regulatory enzymes in human atherosclerosis, the mechanisms regulating 8oxoG repair and the base excision repair enzyme 8oxoG DNA glycosylase I (OGG1) in VSMCs in vitro, and the effects of reducing 8oxoG in VSMCs in atherosclerosis in ApoE-/- mice. RESULTS: Human plaque VSMCs showed defective nuclear 8oxoG repair, associated with reduced acetylation of OGG1. OGG1 was a key regulatory enzyme of 8oxoG repair in VSMCs, and its acetylation was crucial to its repair function through regulation of protein stability and expression. p300 and sirtuin 1 were identified as the OGG1 acetyltransferase and deacetylase regulators, respectively, and both proteins interacted with OGG1 and regulated OGG1 acetylation at endogenous levels. However, p300 levels were decreased in human plaque VSMCs and in response to oxidative stress, suggesting that reactive oxygen species-induced regulation of OGG1 acetylation could be caused by reactive oxygen species-induced decrease in p300 expression. We generated mice that express VSMC-restricted OGG1 or an acetylation defective version (SM22α-OGG1 and SM22α-OGG1K-R mice) and crossed them with ApoE-/- mice. We also studied ApoE-/- mice deficient in OGG1 (OGG1-/-). OGG1-/- mice showed increased 8oxoG in vivo and increased atherosclerosis, whereas mice expressing VSMC-specific OGG1 but not the acetylation mutant OGG1K-R showed markedly reduced intracellular 8oxoG and reduced atherosclerosis. VSMC OGG1 reduced telomere 8oxoG accumulation, DNA strand breaks, cell death and senescence after oxidant stress, and activation of proinflammatory pathways. CONCLUSIONS: We identify defective 8oxoG base excision repair in human atherosclerotic plaque VSMCs, OGG1 as a major 8oxoG repair enzyme in VSMCs, and p300/sirtuin 1 as major regulators of OGG1 through acetylation/deacetylation. Reducing oxidative damage by rescuing OGG1 activity reduces plaque development, indicating the detrimental effects of 8oxoG on VSMC function.


Assuntos
Aterosclerose/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Placa Aterosclerótica , Acetilação , Animais , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/metabolismo , Células Cultivadas , DNA Glicosilases/deficiência , DNA Glicosilases/genética , Modelos Animais de Doenças , Feminino , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Masculino , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Processamento de Proteína Pós-Traducional , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 38(3): 555-565, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326312

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) apoptosis accelerates atherosclerosis and promotes breakdown of the extracellular matrix, but the mechanistic links between these 2 processes are unknown. The forkhead protein FOXO3a (forkhead transcription factor O subfamily member 3a) is activated in human atherosclerosis and induces a range of proapoptotic and other transcriptional targets. We, therefore, determined the mechanisms and consequences of FOXO3a activation in atherosclerosis and arterial remodeling after injury. APPROACH AND RESULTS: Expression of a conditional FOXO3a allele (FOXO3aA3ER) potently induced VSMC apoptosis, expression and activation of MMP13 (matrix metalloproteinase 13), and downregulation of endogenous TIMPs (tissue inhibitors of MMPs). mmp13 and mmp2 were direct FOXO3a transcriptional targets in VSMCs. Activation of endogenous FOXO3a also induced MMP13, extracellular matrix degradation, and apoptosis, and MMP13-specific inhibitors and fibronectin reduced FOXO3a-mediated apoptosis. FOXO3a activation in mice with VSMC-restricted FOXO3aA3ER induced MMP13 expression and activity and medial VSMC apoptosis. FOXO3a activation in FOXO3aA3ER/ApoE-/- (apolipoprotein E deficient) mice increased atherosclerosis, increased necrotic core and reduced fibrous cap areas, and induced features of medial degeneration. After carotid artery ligation, FOXO3a activation increased VSMC apoptosis, VSMC proliferation, and neointima formation, all of which were reduced by MMP13 inhibition. CONCLUSIONS: FOXO3a activation induces VSMC apoptosis and extracellular matrix breakdown, in part, because of transcriptional activation of MMP13. FOXO3a activation promotes atherosclerosis and medial degeneration and increases neointima after injury that is partly dependent on MMP13. FOXO3a-induced MMP activation represents a direct mechanistic link between VSMC apoptosis and matrix breakdown in vascular disease.


Assuntos
Apoptose , Aterosclerose/enzimologia , Lesões das Artérias Carótidas/enzimologia , Matriz Extracelular/enzimologia , Proteína Forkhead Box O3/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Remodelação Vascular , Animais , Aterosclerose/genética , Aterosclerose/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrose , Proteína Forkhead Box O3/genética , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout para ApoE , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/patologia , Necrose , Ratos Wistar , Transdução de Sinais , Ativação Transcricional
16.
Circ Res ; 118(4): 692-702, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892967

RESUMO

The historical view of vascular smooth muscle cells (VSMCs) in atherosclerosis is that aberrant proliferation of VSMCs promotes plaque formation, but that VSMCs in advanced plaques are entirely beneficial, for example preventing rupture of the fibrous cap. However, this view has been based on ideas that there is a homogenous population of VSMCs within the plaque, that can be identified separate from other plaque cells (particularly macrophages) using standard VSMC and macrophage immunohistochemical markers. More recent genetic lineage tracing studies have shown that VSMC phenotypic switching results in less-differentiated forms that lack VSMC markers including macrophage-like cells, and this switching directly promotes atherosclerosis. In addition, VSMC proliferation may be beneficial throughout atherogenesis, and not just in advanced lesions, whereas VSMC apoptosis, cell senescence, and VSMC-derived macrophage-like cells may promote inflammation. We review the effect of embryological origin on VSMC behavior in atherosclerosis, the role, regulation and consequences of phenotypic switching, the evidence for different origins of VSMCs, and the role of individual processes that VSMCs undergo in atherosclerosis in regard to plaque formation and the structure of advanced lesions. We think there is now compelling evidence that a full understanding of VSMC behavior in atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Apoptose , Aterosclerose/patologia , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Senescência Celular , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , Transdução de Sinais
17.
Circ Res ; 119(12): 1313-1323, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27682618

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) accumulation is a hallmark of atherosclerosis and vascular injury. However, fundamental aspects of proliferation and the phenotypic changes within individual VSMCs, which underlie vascular disease, remain unresolved. In particular, it is not known whether all VSMCs proliferate and display plasticity or whether individual cells can switch to multiple phenotypes. OBJECTIVE: To assess whether proliferation and plasticity in disease is a general characteristic of VSMCs or a feature of a subset of cells. METHODS AND RESULTS: Using multicolor lineage labeling, we demonstrate that VSMCs in injury-induced neointimal lesions and in atherosclerotic plaques are oligoclonal, derived from few expanding cells. Lineage tracing also revealed that the progeny of individual VSMCs contributes to both alpha smooth muscle actin (aSma)-positive fibrous cap and Mac3-expressing macrophage-like plaque core cells. Costaining for phenotypic markers further identified a double-positive aSma+ Mac3+ cell population, which is specific to VSMC-derived plaque cells. In contrast, VSMC-derived cells generating the neointima after vascular injury generally retained the expression of VSMC markers and the upregulation of Mac3 was less pronounced. Monochromatic regions in atherosclerotic plaques and injury-induced neointima did not contain VSMC-derived cells expressing a different fluorescent reporter protein, suggesting that proliferation-independent VSMC migration does not make a major contribution to VSMC accumulation in vascular disease. CONCLUSIONS: We demonstrate that extensive proliferation of a low proportion of highly plastic VSMCs results in the observed VSMC accumulation after injury and in atherosclerotic plaques. Therapeutic targeting of these hyperproliferating VSMCs might effectively reduce vascular disease without affecting vascular integrity.


Assuntos
Aterosclerose/fisiopatologia , Proliferação de Células/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Neointima/fisiopatologia , Lesões do Sistema Vascular/fisiopatologia , Animais , Aterosclerose/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Neointima/patologia , Lesões do Sistema Vascular/patologia
18.
Arterioscler Thromb Vasc Biol ; 37(12): 2322-2332, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970293

RESUMO

OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Dano ao DNA , DNA Mitocondrial/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Respiração Celular , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Mitocondrial/genética , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Músculo Liso Vascular/patologia , Necrose , Consumo de Oxigênio , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 112(2): 506-11, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540417

RESUMO

Obesity increases the risk of developing life-threatening metabolic diseases including cardiovascular disease, fatty liver disease, diabetes, and cancer. Efforts to curb the global obesity epidemic and its impact have proven unsuccessful in part by a limited understanding of these chronic progressive diseases. It is clear that low-grade chronic inflammation, or metaflammation, underlies the pathogenesis of obesity-associated type 2 diabetes and atherosclerosis. However, the mechanisms that maintain chronicity and prevent inflammatory resolution are poorly understood. Here, we show that inhibitor of κB kinase epsilon (IKBKE) is a novel regulator that limits chronic inflammation during metabolic disease and atherosclerosis. The pathogenic relevance of IKBKE was indicated by the colocalization with macrophages in human and murine tissues and in atherosclerotic plaques. Genetic ablation of IKBKE resulted in enhanced and prolonged priming of the NLRP3 inflammasome in cultured macrophages, in hypertrophic adipose tissue, and in livers of hypercholesterolemic mice. This altered profile associated with enhanced acute phase response, deregulated cholesterol metabolism, and steatoheptatitis. Restoring IKBKE only in hematopoietic cells was sufficient to reverse elevated inflammasome priming and these metabolic features. In advanced atherosclerotic plaques, loss of IKBKE and hematopoietic cell restoration altered plaque composition. These studies reveal a new role for hematopoietic IKBKE: to limit inflammasome priming and metaflammation.


Assuntos
Quinase I-kappa B/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Transporte/metabolismo , Feminino , Sistema Hematopoético/metabolismo , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Inflamação/etiologia , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Extra Corpor Technol ; 50(4): 260-264, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30581236

RESUMO

Low cardiac output syndrome and the systemic inflammatory response are consequences of the cardiac surgical perioperative course. The mechanisms responsible are multifactorial, but recent studies have shown that nitric oxide (NO) may be a key component in mitigating some of these processes. Following on from literature reports detailing the use of inhaled NO added to the gas phase of the extracorporeal circuit, we set about developing a technique to perform this addition safely and efficiently. In the setting of cardiopulmonary bypass, the technique was validated in a randomized prospective trial looking at 198 children. The benefits observed in this trial then stimulated the incorporation of NO into all extracorporeal life support (ECLS) circuits. This required additional hardware modifications all of which were able to be performed safely. Initial results from the first series of ECLS patients using NO also appear promising.


Assuntos
Ponte Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Humanos , Óxido Nítrico , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA