Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Microbiol ; 108(4): 379-396, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29498770

RESUMO

Helicobacter pylori is anomalous among non nitrogen-fixing bacteria in containing an incomplete NIF system for Fe-S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU-depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild-type (WT) strains. The hp1492 gene, encoding a putative Nfu-type Fe-S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe-2S] or [4Fe-4S] cluster/dimer, based on analytical, UV-visible absorption/CD and resonance Raman studies. A bacterial two-hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe-S-containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe-S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe-S clusters in H. pylori.


Assuntos
Sequência de Aminoácidos , Sequência de Bases , Helicobacter pylori/genética , Proteínas Ferro-Enxofre/metabolismo , Deleção de Sequência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Humanos , Proteínas Ferro-Enxofre/genética , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Bacteriol ; 200(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29866802

RESUMO

The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , Urease/metabolismo , Helicobacter pylori/patogenicidade , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Estresse Oxidativo
3.
J Biol Chem ; 291(45): 23366-23373, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27605666

RESUMO

Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Helicobacter/enzimologia , Estresse Oxidativo/fisiologia , Animais , Proteínas de Bactérias/genética , Catalase/genética , Catálise , Mucosa Gástrica/microbiologia , Helicobacter/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Deleção de Sequência
4.
J Bacteriol ; 198(9): 1423-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26929299

RESUMO

UNLABELLED: A molecular hydrogen (H2)-stimulated, chemolithoautotrophic growth mode for the gastric pathogen Helicobacter pylori is reported. In a culture medium containing peptides and amino acids, H2-supplied cells consistently achieved 40 to 60% greater growth yield in 16 h and accumulated 3-fold more carbon from [(14)C]bicarbonate (on a per cell basis) in a 10-h period than cells without H2 Global proteomic comparisons of cells supplied with different atmospheric conditions revealed that addition of H2 led to increased amounts of hydrogenase and the biotin carboxylase subunit of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), as well as other proteins involved in various cellular functions, including amino acid metabolism, heme synthesis, or protein degradation. In agreement with this result, H2-supplied cells contained 3-fold more ACC activity than cells without H2 Other possible carbon dioxide (CO2) fixation enzymes were not up-expressed under the H2-containing atmosphere. As the gastric mucus is limited in carbon and energy sources and the bacterium lacks mucinase, this new growth mode may contribute to the persistence of the pathogen in vivo This is the first time that chemolithoautotrophic growth is described for a pathogen. IMPORTANCE: Many pathogens must survive within host areas that are poorly supplied with carbon and energy sources, and the gastric pathogen Helicobacter pylori resides almost exclusively in the nutritionally stringent mucus barrier of its host. Although this bacterium is already known to be highly adaptable to gastric niches, a new aspect of its metabolic flexibility, whereby molecular hydrogen use (energy) is coupled to carbon dioxide fixation (carbon acquisition) via a described carbon fixation enzyme, is shown here. This growth mode, which supplements heterotrophy, is termed chemolithoautotrophy and has not been previously reported for a pathogen.


Assuntos
Ciclo do Carbono , Crescimento Quimioautotrófico , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/metabolismo , Hidrogênio/metabolismo , Acetil-CoA Carboxilase/biossíntese , Aminoácidos/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Helicobacter pylori/enzimologia , Heme/biossíntese
5.
Infect Immun ; 83(1): 311-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368112

RESUMO

Salmonella enterica serovar Typhimurium utilizes molecular hydrogen as a substrate in various respiratory pathways, via H2-uptake enzymes termed Hya, Hyb, and Hyd. A different hydrogenase, the hydrogen-evolving Hyc enzyme, removes excess reductant during fermentative growth. Virulence phenotypes conferred by mutations in hyc genes, either alone or in combination with mutations in the H2-uptake enzyme genes, are addressed. Anaerobically grown ΔhycB or ΔhycC single-deletion strains were more sensitive to acid than the wild-type strain, but the Δhyc strains were like the virulent parent strain with respect to both mouse morbidity and mortality and in organ burden numbers. Even fecal-recovery numbers for both mutant strains at several time points prior to the animals succumbing to salmonellosis were like those seen with the parent. Neither hydrogen uptake nor evolution of the gas was detected in a hydrogenase quadruple-mutant strain containing deletions in the hya, hyb, hyd, and hyc genes. As previously described, a strain lacking all H2-uptake ability was severely attenuated in its virulence characteristics, and the quadruple-mutant strain had the same (greatly attenuated) phenotype. While H2 levels were greatly reduced in ceca of mice treated with antibiotics, both the ΔhycB and ΔhycC strains were still like the parent in their ability to cause typhoid salmonellosis. It seems that the level of H2 produced by the pathogen (through formate hydrogen lyase [FHL] and Hyc) is insignificant in terms of providing respiratory reductant to facilitate either organ colonization or contributions to gut growth leading to pathogenesis.


Assuntos
Hidrogênio/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Virulência , Fatores de Virulência/genética
6.
Mol Microbiol ; 89(2): 304-23, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23710935

RESUMO

The ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for colonization and survival within the gastric mucosa. H. pylori Fur is unique in its ability to activate and repress gene expression in both the iron-bound (Fe-Fur) and apo forms (apo-Fur). In the current study we combined random and site-specific mutagenesis to identify amino acid residues important for both Fe-Fur and apo-Fur function. We identified 25 mutations that affected Fe-Fur repression and 23 mutations that affected apo-Fur repression, as determined by transcriptional analyses of the Fe-Fur target gene amiE, and the apo-Fur target gene, pfr. In addition, eight of these mutations also significantly affected levels of Fur in the cell. Based on regulatory phenotypes, we selected several representative mutations to characterize further. Of those selected, we purified the wild-type (HpFurWT) and three mutant Fur proteins (HpFurE5A, HpFurA92T and HpFurH134Y), which represent mutations in the N-terminal extension, the regulatory metal binding site (S2) and the structural metal binding site (S3) respectively. Purified proteins were evaluated for secondary structure by circular dichroism spectroscopy, iron-binding by atomic absorption spectrophotometry, oligomerization in manganese-substituted and apo conditions by in vitro cross-linking assays, and DNA binding to Fe-Fur and apo-Fur target sequences by fluorescence anisotropy. The results showed that the N-terminal, S2 and S3 regions play distinct roles in terms of Fur structure-function relationships. Overall, these studies provide novel information regarding the role of these residues in Fur function, and provide mechanistic insight into how H. pylori Fur regulates gene expression in both the iron-bound and apo forms of the protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Polarização de Fluorescência , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Helicobacter pylori/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Repressoras/genética , Relação Estrutura-Atividade
7.
Res Microbiol ; : 104219, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945250

RESUMO

Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both L-asparagine (L-Asn) and L-aspartic acid (L-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the D-enantiomer form of both asparagine (D-Asn) and aspartic acid (D-Asp) only increased anaerobic growth in C. concisus strain 13826 and C. ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative D/L-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either D-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either D-Asp or D-Asn. The use of D-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of C. gracilis, C. rectus and C. showae, is significant, because D-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a D-amino acid essential for human health.

8.
J Bacteriol ; 195(23): 5396-401, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097943

RESUMO

Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Helicobacter pylori/enzimologia , Metionina Sulfóxido Redutases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Hipocloroso , Metionina Sulfóxido Redutases/genética , Mutação , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas/genética
9.
Infect Immun ; 81(2): 580-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230291

RESUMO

The transition metal nickel (Ni) is critical for the pathogenicity of Helicobacter pylori. Indeed the element is a required component of two enzymes, hydrogenase and urease, that have been shown to be important for in vivo colonization of the host gastric mucosa. Urease accounts for up to 10% of the total cellular H. pylori protein content, and therefore the bacterial Ni demand is very high. H. pylori possess two small and abundant histidine-rich, Ni-binding proteins, Hpn and Hpn-like, whose physiological role in the host have not been investigated. In this study, special husbandry conditions were used to control Ni levels in the host (mouse), including the use of Ni-free versus Ni-supplemented food. The efficacy of each diet was confirmed by measuring the Ni concentrations in sera of mice fed with either diet. Colonization levels (based on rank tests) of the Δhpn Δhpn-like double mutants isolated from the mice provided Ni-deficient chow were statistically lower than those for mice given Ni in their diet. In contrast, H. pylori wild-type colonization levels were similar in both host groups (e.g., regardless of Ni levels). Our results indicate that the gastric pathogen H. pylori can utilize stored Ni via defined histidine-rich proteins to aid colonization of the host.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Níquel/metabolismo , Ração Animal , Animais , Proteínas de Bactérias/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Camundongos , Mutação/genética , Proteínas/genética , Proteínas/metabolismo
10.
Biochim Biophys Acta ; 1820(10): 1519-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22698670

RESUMO

BACKGROUND: The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni(2+) into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH. METHODS: Optical biosensing methods (biolayer interferometry and plasmon surface resonance) were used to screen for interactions between HypA, HypB, UreE and UreG. RESULTS: Using both methods, affinity constants were found to be 5nM and 13nM for HypA-UreE and 8µM and 14µM for UreG-UreE. Neither Zn(2+) nor Ni(2+) had an effect on the kinetics or stability of the HypA-UreE complex. By contrast, addition of Zn(2+), but not Ni(2+), altered the kinetics and greatly increased the stability of the UreE-UreG complex, likely due in part to Zn(2+)-mediated oligomerization of UreE. Finally our results unambiguously show that HypA, UreE and UreG cannot form a heterotrimeric protein complex in vitro; instead, HypA and UreG compete with each other for UreE recognition. GENERAL SIGNIFICANCE: Factors influencing the pathogen's nickel budget are important to understand pathogenesis and for future drug design.


Assuntos
Proteínas de Bactérias/metabolismo , Ligação Competitiva/fisiologia , Proteínas de Transporte/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Helicobacter pylori/enzimologia , Hidrogenase/metabolismo , Metalochaperonas , Proteínas de Ligação a Fosfato , Ligação Proteica , Multimerização Proteica/fisiologia , Análise Espectral/métodos , Ressonância de Plasmônio de Superfície/métodos , Urease/metabolismo
11.
Microbiology (Reading) ; 159(Pt 1): 136-146, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23139401

RESUMO

Helicobacter hepaticus open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The H. hepaticus nikR mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the nikR strain had increased cytoplasmic nickel levels. Transcription of nikABDE (putative inner membrane Ni transport system) and hh0418 (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the nikABDE promoter (P(nikA)), but not to the urease or the hydrogenase promoter; NikR-P(nikA) binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nikR nor the exbB-exbD-tonB were under the control of the NikR regulator, in contrast with their Helicobacter pylori homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in H. hepaticus, without direct regulation of the Ni-enzyme genes (the latter is the case for H. pylori). Finally, the nikR strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.


Assuntos
Regulação Bacteriana da Expressão Gênica , Helicobacter hepaticus/enzimologia , Hidrogenase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Urease/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Helicobacter hepaticus/genética , Helicobacter hepaticus/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética
12.
mBio ; 14(5): e0147523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37607056

RESUMO

IMPORTANCE: Campylobacter concisus is an excellent model organism to study respiration diversity, including anaerobic respiration of physiologically relevant N-/S-oxides compounds, such as biotin sulfoxide, dimethyl sulfoxide, methionine sulfoxide (MetO), nicotinamide N-oxide, and trimethylamine N-oxide. All C. concisus strains harbor at least two, often three, and up to five genes encoding for putative periplasmic Mo/W-bisPGD-containing N-/S-oxide reductases. The respective role (substrate specificity) of each enzyme was studied using a mutagenesis approach. One of the N/SOR enzymes, annotated as "BisA", was found to be essential for anaerobic respiration of both N- and S-oxides. Additional phenotypes associated with disruption of the bisA gene included increased sensitivity toward oxidative stress and elongated cell morphology. Furthermore, a biochemical approach confirmed that BisA can repair protein-bound MetO residues. Hence, we propose that BisA plays a role as a periplasmic methionine sulfoxide reductase. This is the first report of a Mo/W-bisPGD-enzyme supporting both N- or S-oxide respiration and protein-bound MetO repair in a pathogen.


Assuntos
Metionina , Óxidos , Anaerobiose , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Respiração
13.
Metallomics ; 14(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963007

RESUMO

The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.


Assuntos
Campylobacter jejuni , Animais , Campylobacter jejuni/metabolismo , Quelantes/metabolismo , Galinhas/metabolismo , Níquel/metabolismo , Níquel/toxicidade , Oximas
14.
ACS Infect Dis ; 8(8): 1491-1508, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35801980

RESUMO

The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Adjuvantes Farmacêuticos/farmacologia , Animais , Antibacterianos/química , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Bactérias Gram-Negativas , Camundongos
15.
Sci Rep ; 11(1): 10794, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031459

RESUMO

Iron-sulfur (Fe-S) proteins play essential roles in all living organisms. The gastric pathogen Helicobacter pylori relies exclusively on the NIF system for biosynthesis and delivery of Fe-S clusters. Previously characterized components include two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein), and a dispensable Fe-S carrier, Nfu. Among 38 proteins previously predicted to coordinate Fe-S clusters, two proteins, HP0207 (a member of the Nbp35/ApbC ATPase family) and HP0277 (previously annotated as FdxA, a member of the YfhL ferredoxin-like family) were further studied, using a bacterial two-hybrid system approach to identify protein-protein interactions. ApbC was found to interact with 30 proteins, including itself, NifS, NifU, Nfu and FdxA, and alteration of the conserved ATPase motif in ApbC resulted in a significant (50%) decrease in the number of protein interactions, suggesting the ATpase activity is needed for some ApbC-target protein interactions. FdxA was shown to interact with 21 proteins, including itself, NifS, ApbC and Nfu, however no interactions between NifU and FdxA were detected. By use of cross-linking studies, a 51-kDa ApbC-Nfu heterodimer complex was identified. Attempts to generate apbC chromosomal deletion mutants in H. pylori were unsuccessful, therefore indirectly suggesting the hp0207 gene is essential. In contrast, mutants in the fdxA gene were obtained, albeit only in one parental strain (26695). Taken together, these results suggest both ApbC and FdxA are important players in the H. pylori NIF maturation system.


Assuntos
Helicobacter pylori/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Bactérias/metabolismo , Fixação de Nitrogênio , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
16.
Sci Rep ; 11(1): 6622, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758258

RESUMO

One of the hallmarks of the most common neurodegenerative disease, Alzheimer's disease (AD), is the extracellular deposition and aggregation of Amyloid Beta (Aß)-peptides in the brain. Previous studies have shown that select metal ions, most specifically copper (Cu) and zinc (Zn) ions, have a synergistic effect on the aggregation of Aß-peptides. In the present study, inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the metal content of a commercial recombinant human Aß40 peptide. Cu and Zn were among the metals detected; unexpectedly, nickel (Ni) was one of the most abundant elements. Using a fluorescence-based assay, we found that Aß40 peptide in vitro aggregation was enhanced by addition of Zn2+ and Ni2+, and Ni2+-induced aggregation was facilitated by acidic conditions. Nickel binding to Aß40 peptide was confirmed by isothermal titration calorimetry. Addition of the Ni-specific chelator dimethylglyoxime (DMG) inhibited Aß40 aggregation in absence of added metal, as well as in presence of Cu2+ and Ni2+, but not in presence of Zn2+. Finally, mass spectrometry analysis revealed that DMG can coordinate Cu or Ni, but not Fe, Se or Zn. Taken together, our results indicate that Ni2+ ions enhance, whereas nickel chelation inhibits, Aß peptide in vitro aggregation. Hence, DMG-mediated Ni-chelation constitutes a promising approach towards inhibiting or slowing down Aß40 aggregation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Quelantes/metabolismo , Níquel/metabolismo , Oximas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cobre , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Metais , Zinco
17.
J Bacteriol ; 192(19): 5037-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20644138

RESUMO

The ferric uptake regulator (Fur) of the medically important pathogen Helicobacter pylori is unique in that it has been shown to function as a repressor both in the presence of an Fe2+ cofactor and in its apo (non-Fe2+-bound) form. However, virtually nothing is known concerning the amino acid residues that are important for Fur functioning. Therefore, mutations in six conserved amino acid residues of H. pylori Fur were constructed and analyzed for their impact on both iron-bound and apo repression. In addition, accumulation of the mutant proteins, protein secondary structure, DNA binding ability, iron binding capacity, and the ability to form higher-order structures were also examined for each mutant protein. While none of the mutated residues completely abrogated the function of Fur, we were able to identify residues that were critical for both iron-bound and apo-Fur repression. One mutation, V64A, did not alter regulation of any target genes. However, each of the five remaining mutations showed an effect on either iron-bound or apo regulation. Of these, H96A, E110A, and E117A mutations altered iron-bound Fur regulation and were all shown to influence iron binding to different extents. Additionally, the H96A mutation was shown to alter Fur oligomerization, and the E110A mutation was shown to impact oligomerization and DNA binding. Conversely, the H134A mutant exhibited changes in apo-Fur regulation that were the result of alterations in DNA binding. Although the E90A mutant exhibited alterations in apo-Fur regulation, this mutation did not affect any of the assessed protein functions. This study is the first for H. pylori to analyze the roles of specific amino acid residues of Fur in function and continues to highlight the complexity of Fur regulation in this organism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Helicobacter pylori/genética , Ferro/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/genética , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
18.
Biochemistry ; 49(33): 7080-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20681615

RESUMO

The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 A resolution, bound to Cu(2+) at 2.7 A resolution, and bound to Ni(2+) at 3.1 A resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding. The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni(2+) for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni(2+)-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Helicobacter pylori/enzimologia , Níquel/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Cobre/química , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Modelos Moleculares , Níquel/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica
19.
Microbiol Mol Biol Rev ; 84(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31996394

RESUMO

Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Animais , Bactérias/enzimologia , Fermentação , Trato Gastrointestinal/microbiologia , Genoma Bacteriano , Humanos , Oxirredução , Virulência
20.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233512

RESUMO

The development of innovative antimicrobial materials is crucial in thwarting infectious diseases caused by microbes, as drug-resistant pathogens are increasing in both number and capacity to detoxify the antimicrobial drugs used today. An ideal antimicrobial material should inhibit a wide variety of bacteria in a short period of time, be less or not toxic to normal cells, and the fabrication or synthesis process should be cheap and easy. We report a one-step microwave-assisted hydrothermal synthesis of mixed composite CuxFeyOz (Fe2O3/Cu2O/CuO/CuFe2O) nanoparticles (NPs) as an excellent antimicrobial material. The 1 mg/mL CuxFeyOz NPs with the composition 36% CuFeO2, 28% Cu2O and 36% Fe2O3 have a general antimicrobial activity greater than 5 log reduction within 4 h against nine important human pathogenic bacteria (including drug-resistant bacteria as well as Gram-positive and Gram-negative strains). For example, they induced a >9 log reduction in Escherichia coli B viability after 15 min of incubation, and an ~8 log reduction in multidrug-resistant Klebsiella pneumoniae after 4 h incubation. Cytotoxicity tests against mouse fibroblast cells showed about 74% viability when exposed to 1 mg/mL CuxFeyOz NPs for 24 h, compared to the 20% viability for 1 mg/mL pure Cu2O NPs synthesized by the same method. These results show that the CuxFeyOz composite NPs are a highly efficient, low-toxicity and cheap antimicrobial material that has promising potential for applications in medical and food safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA