Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772419

RESUMO

Air-coupled ultrasound sensors have advantages over contact ultrasound sensors when a sample should not become contaminated or influenced by the couplant or the measurement has to be a fast and automated inline process. Thereby, air-coupled transducers must emit high-energy pulses due to the low air-to-solid power transmission ratios (10-3 to 10-8). Currently used resonant transducers trade bandwidth-a prerequisite for material parameter analysis-against pulse energy. Here we show that a combination of a non-resonant ultrasound emitter and a non-resonant detector enables the generation and detection of pulses that are both high in amplitude (130 dB) and bandwidth (2 µs pulse width). We further show an initial application: the detection of reflections inside of a carbon fiber reinforced plastic plate with thicknesses between 1.7 mm and 10 mm. As the sensors work contact-free, the time of flight and the period of the in-plate reflections are independent parameters. Hence, a variation of ultrasound velocity is distinguishable from a variation of plate thickness and both properties are determined simultaneously. The sensor combination is likely to find numerous industrial applications necessitating high automation capacity and opens possibilities for air-coupled, single-side ultrasonic inspection.

2.
PLoS Comput Biol ; 15(12): e1007548, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856155

RESUMO

The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechanism to generate a directional bias for chemotaxis and interactions with external fields (e.g., gravity, magnetic field, fluid flow) that impose forces or torques on the swimmer. We show how this modified model can be applied to various scenarios: First, the run and tumble motion of E. coli is used to establish a paradigm for chemotaxis and investigate how it is affected by external forces. Then, we study magneto-aerotaxis in magnetotactic bacteria, which is biased not only by an oxygen gradient towards a preferred concentration, but also by magnetic fields, which exert a torque on an intracellular chain of magnets. We study the competition of magnetic alignment with active reorientation and show that the magnetic orientation can improve chemotaxis and thereby provide an advantage to the bacteria, even at rather large inclination angles of the magnetic field relative to the oxygen gradient, a case reminiscent of what is expected for the bacteria at or close to the equator. The highest gain in chemotactic velocity is obtained for run and tumble with a magnetic field parallel to the gradient, but in general a mechanism for reverse motion is necessary to swim against the magnetic field and a run and reverse strategy is more advantageous in the presence of a magnetic torque. This finding is consistent with observations that the dominant mode of directional changes in magnetotactic bacteria is reversal rather than tumbles. Moreover, it provides guidance for the design of future magnetic biohybrid swimmers.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Escherichia coli/fisiologia , Magnetismo , Magnetospirillum/fisiologia , Movimento/fisiologia , Torque
3.
Small ; : e1704374, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855143

RESUMO

Many motile microorganisms swim and navigate in chemically and mechanically complex environments. These organisms can be functionalized and directly used for applications (biohybrid approach), but also inspire designs for fully synthetic microbots. The most promising designs of biohybrids and bioinspired microswimmers include one or several magnetic components, which lead to sustainable propulsion mechanisms and external controllability. This Review addresses such magnetic microswimmers, which are often studied in view of certain applications, mostly in the biomedical area, but also in the environmental field. First, propulsion systems at the microscale are reviewed and the magnetism of microswimmers is introduced. The review of the magnetic biohybrids and bioinspired microswimmers is structured gradually from mostly biological systems toward purely synthetic approaches. Finally, currently less explored parts of this field ranging from in situ imaging to swarm control are discussed.

4.
Nanomaterials (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066027

RESUMO

Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity.

5.
Elife ; 92020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31989923

RESUMO

Bacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additional experimental limitations. We show that magnetotactic cocci with two flagella bundles on one pole swim faster than 500 µm·s-1 along a double helical path, making them one of the fastest natural microswimmers. We additionally reveal that the cells reorient in less than 5 ms, an order of magnitude faster than reported so far for any other bacteria. Using hydrodynamic modeling, we demonstrate that a mode where a pushing and a pulling bundle cooperate is the only possibility to enable both helical tracks and fast reorientations. The advantage of sheathed flagella bundles is the high rigidity, making high swimming speeds possible.


Assuntos
Alphaproteobacteria , Flagelos , Alphaproteobacteria/química , Alphaproteobacteria/citologia , Alphaproteobacteria/metabolismo , Alphaproteobacteria/fisiologia , Flagelos/química , Flagelos/metabolismo , Flagelos/fisiologia , Hidrodinâmica , Modelos Biológicos , Movimento/fisiologia , Rotação
6.
J Phys Chem Lett ; 8(6): 1132-1136, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28225626

RESUMO

It is now recognized that nucleation and growth of crystals can occur not only by the addition of solvated ions but also by accretion of nanoparticles, in a process called nonclassical crystallization. The theoretical framework of such processes has only started to be described, partly due to the lack of kinetic or thermodynamic data. Here, we study the growth of magnetite nanoparticles from primary particles-nanometer-sized amorphous iron-rich precursors-in aqueous solution at different temperatures. We propose a theoretical framework to describe the growth of the nanoparticles and model both a diffusion-limited and a reaction-limited pathway to determine which of these best describes the rate-limiting step of the process. We show that, based on the measured iron concentration and the related calculated concentration of primary particles at the steady state, magnetite growth is likely a reaction-limited process, and within the framework of our model, we propose a phase diagram to summarize the observations.

7.
ACS Nano ; 11(10): 9968-9978, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28933815

RESUMO

Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods includes the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles to the biofilm results in only moderate efficacy. We demonstrate here that the nonpathogenic magnetotactic bacteria Magnetosopirrillum gryphiswalense (MSR-1) can be integrated with drug-loaded mesoporous silica microtubes to build controllable microswimmers (biohybrids) capable of antibiotic delivery to target an infectious biofilm. Applying external magnetic guidance capability and swimming power of the MSR-1 cells, the biohybrids are directed to and forcefully pushed into matured Escherichia coli (E. coli) biofilms. Release of the antibiotic, ciprofloxacin, is triggered by the acidic microenvironment of the biofilm, ensuring an efficient drug delivery system. The results reveal the capabilities of a nonpathogenic bacteria species to target and dismantle harmful biofilms, indicating biohybrid systems have great potential for antibiofilm applications.


Assuntos
Biofilmes , Escherichia coli/metabolismo , Magnetospirillum/metabolismo , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Sistemas de Liberação de Medicamentos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
8.
IEEE Trans Med Imaging ; 34(2): 644-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25350924

RESUMO

It has been shown that magnetic particle imaging (MPI), an imaging method suggested in 2005, is capable of measuring the spatial distribution of magnetic nanoparticles. Since the particles can be administered as biocompatible suspensions, this method promises to perform well as a tracer-based medical imaging technique. It is capable of generating real-time images, which will be useful in interventional procedures, without utilizing any harmful radiation. To obtain a signal from the administered superparamagnetic iron oxide (SPIO) particles, a sinusoidal changing external homogeneous magnetic field is applied. To achieve spatial encoding, a gradient field is superimposed. Conventional MPI works with a spatial encoding field that features a field free point (FFP). To increase sensitivity, an improved spatial encoding field, featuring a field free line (FFL) can be used. Previous FFL scanners, featuring a 1-D excitation, could demonstrate the feasibility of the FFL-based MPI imaging process. In this work, an FFL-based MPI scanner is presented that features a 2-D excitation field and, for the first time, an electronic rotation of the spatial encoding field. Furthermore, the role of relaxation effects in MPI is starting to move to the center of interest. Nevertheless, no reconstruction schemes presented thus far include a dynamical particle model for image reconstruction. A first application of a model that accounts for relaxation effects in the reconstruction of MPI images is presented here in the form of a simplified, but well performing strategy for signal deconvolution. The results demonstrate the high impact of relaxation deconvolution on the MPI imaging process.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/química , Processamento de Sinais Assistido por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA