Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308665

RESUMO

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Transdução de Sinais , Camundongos Transgênicos , Imunoterapia , Microambiente Tumoral
2.
Cell ; 155(2): 435-47, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24075010

RESUMO

Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes--MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Fatores de Regulação Miogênica/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans , Proteínas de Drosophila/imunologia , Drosophila melanogaster/microbiologia , Enterobacter cloacae , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Glicogênio/metabolismo , Metabolismo , Mycobacterium marinum , Fatores de Regulação Miogênica/imunologia , Fosforilação , Proteína de Ligação a TATA-Box/metabolismo
3.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972658

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Camundongos , Humanos , Animais , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/patologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Fator 2 de Diferenciação de Crescimento/metabolismo
4.
Am J Physiol Endocrinol Metab ; 322(5): E436-E445, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344393

RESUMO

The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.


Assuntos
Proteínas de Ligação ao GTP , Obesidade , Receptor Tipo 4 de Melanocortina , Animais , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Ligação ao GTP/metabolismo , Locomoção , Camundongos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética
5.
Nature ; 468(7326): 933-9, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164481

RESUMO

The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of ß-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating ß-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.


Assuntos
Catecolaminas/metabolismo , Metabolismo Energético , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Temperatura Corporal , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gorduras na Dieta/farmacologia , Metabolismo Energético/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina , Americanos Mexicanos/genética , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Proteínas RGS/biossíntese , Proteínas RGS/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 110(1): 117-22, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23256157

RESUMO

cAMP signaling can both promote and inhibit myogenic differentiation, but little is known about the mechanisms mediating promyogenic effects of cAMP. We previously demonstrated that the cAMP response element-binding protein (CREB) transcriptional target salt-inducible kinase 1 (SIK1) promotes MEF2 activity in myocytes via phosphorylation of class II histone deacetylase proteins (HDACs). However, it was unknown whether SIK1 couples cAMP signaling to the HDAC-MEF2 pathway during myogenesis and how this response could specifically occur in differentiating muscle cells. To address these questions, we explored SIK1 regulation and function in muscle precursor cells before and during myogenic differentiation. We found that in primary myogenic progenitor cells exposed to cAMP-inducing agents, Sik1 transcription is induced, but the protein is rapidly degraded by the proteasome. By contrast, sustained cAMP signaling extends the half-life of SIK1 in part by phosphorylation of Thr475, a previously uncharacterized site that we show can be phosphorylated by PKA in cell-free assays. We also identified a functional PEST domain near Thr475 that contributes to SIK1 degradation. During differentiation of primary myogenic progenitor cells, when PKA activity has been shown to increase, we observe elevated Sik1 transcripts as well as marked accumulation and stabilization of SIK1 protein. Depletion of Sik1 in primary muscle precursor cells profoundly impairs MEF2 protein accumulation and myogenic differentiation. Our findings support an emerging model in which SIK1 integrates cAMP signaling with the myogenic program to support appropriate timing of differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Clonagem Molecular , DNA Complementar/genética , Densitometria , Imunofluorescência , Células HEK293 , Meia-Vida , Humanos , Mioblastos/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
J Cell Sci ; 126(Pt 10): 2213-24, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525013

RESUMO

The circadian clock network is an evolutionarily conserved mechanism that imparts temporal regulation to diverse biological processes. Brain and muscle Arnt-like 1 (Bmal1), an essential transcriptional activator of the clock, is highly expressed in skeletal muscle. However, whether this key clock component impacts myogenesis, a temporally regulated event that requires the sequential activation of myogenic regulatory factors, is not known. Here we report a novel function of Bmal1 in controlling myogenic differentiation through direct transcriptional activation of components of the canonical Wnt signaling cascade, a major inductive signal for embryonic and postnatal muscle growth. Genetic loss of Bmal1 in mice leads to reduced total muscle mass and Bmal1-deficient primary myoblasts exhibit significantly impaired myogenic differentiation accompanied by markedly blunted expression of key myogenic regulatory factors. Conversely, forced expression of Bmal1 enhances differentiation of C2C12 myoblasts. This cell-autonomous effect of Bmal1 is mediated by Wnt signaling as both expression and activity of Wnt components are markedly attenuated by inhibition of Bmal1, and activation of the Wnt pathway partially rescues the myogenic defect in Bmal1-deficient myoblasts. We further reveal direct association of Bmal1 with promoters of canonical Wnt pathway genes, and as a result of this transcriptional regulation, Wnt signaling components exhibit intrinsic circadian oscillation. Collectively, our study demonstrates that the core clock gene, Bmal1, is a positive regulator of myogenesis, which may represent a temporal regulatory mechanism to fine-tune myocyte differentiation.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Encéfalo/fisiologia , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Relógios Circadianos/genética , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Mioblastos/patologia , RNA Interferente Pequeno/genética , Ativação Transcricional/genética , Transgenes/genética , Via de Sinalização Wnt/genética
8.
Nat Med ; 13(5): 597-603, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17468767

RESUMO

During physical exercise, increases in motor neuron activity stimulate the expression of muscle-specific genes through the myocyte enhancer factor 2 (MEF2) family of transcription factors. Elevations in intracellular calcium increase MEF2 activity via the phosphorylation-dependent inactivation of class II histone deacetylases (HDACs). In studies to determine the role of the cAMP responsive element binding protein (CREB) in skeletal muscle, we found that mice expressing a dominant-negative CREB transgene (M-ACREB mice) exhibited a dystrophic phenotype along with reduced MEF2 activity. Class II HDAC phosphorylation was decreased in M-ACREB myofibers due to a reduction in amounts of Snf1lk (encoding salt inducible kinase, SIK1), a CREB target gene that functions as a class II HDAC kinase. Inhibiting class II HDAC activity either by viral expression of Snf1lk or by the administration of a small molecule antagonist improved the dystrophic phenotype in M-ACREB mice, pointing to an important role for the SIK1-HDAC pathway in regulating muscle function.


Assuntos
Sobrevivência Celular/fisiologia , Histona Desacetilases/metabolismo , Células Musculares/citologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Exercício Físico/fisiologia , Regulação da Expressão Gênica , Histona Desacetilase 2 , Humanos , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Distrofia Muscular Animal/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas Serina-Treonina Quinases/deficiência
9.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862513

RESUMO

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Camundongos , Humanos , Animais , Vitamina D/metabolismo , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Cálcio/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Homeostase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Am J Physiol Endocrinol Metab ; 303(1): E1-17, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22354781

RESUMO

Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.


Assuntos
AMP Cíclico/metabolismo , Exercício Físico , Imobilização/efeitos adversos , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Regeneração , Sistemas do Segundo Mensageiro , Adaptação Fisiológica , Adenilil Ciclases/metabolismo , Animais , Humanos , Hipertrofia , Músculo Esquelético/enzimologia , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Condicionamento Físico Animal
11.
J Invest Dermatol ; 142(1): 53-64.e3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280464

RESUMO

Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , AMP Cíclico/metabolismo , Folículo Piloso/fisiologia , Cabelo/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Glicólise , Cabelo/patologia , Isoproterenol/metabolismo , Queratina-15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Procaterol/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais , Sistema Nervoso Simpático
12.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459739

RESUMO

Carboxylesterase 1d (Ces1d) is a crucial enzyme with a wide range of activities in multiple tissues. It has been reported to localize predominantly in ER. Here, we found that Ces1d levels are significantly increased in obese patients with type 2 diabetes. Intriguingly, a high level of Ces1d translocates onto lipid droplets where it digests the lipids to produce a unique set of fatty acids. We further revealed that adipose tissue-specific Ces1d knock-out (FKO) mice gained more body weight with increased fat mass during a high fat-diet challenge. The FKO mice exhibited impaired glucose and lipid metabolism and developed exacerbated liver steatosis. Mechanistically, deficiency of Ces1d induced abnormally large lipid droplet deposition in the adipocytes, causing ectopic accumulation of triglycerides in other peripheral tissues. Furthermore, loss of Ces1d diminished the circulating free fatty acids serving as signaling molecules to trigger the epigenetic regulations of energy metabolism via lipid-sensing transcriptional factors, such as HNF4α. The metabolic disorders induced an unhealthy microenvironment in the metabolically active tissues, ultimately leading to systemic insulin resistance.


Assuntos
Carboxilesterase , Diabetes Mellitus Tipo 2 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Carboxilesterase/genética , Carboxilesterase/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Humanos , Camundongos
13.
Nat Commun ; 13(1): 22, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013148

RESUMO

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with ß2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective ß2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of ß-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle ß2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic ß2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating ß2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Clembuterol/farmacologia , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenômenos Bioquímicos , Clembuterol/metabolismo , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina , Masculino , Doenças Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
14.
Front Physiol ; 12: 725782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512393

RESUMO

The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.

15.
Elife ; 102021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160349

RESUMO

Bone formation and resorption are typically coupled, such that the efficacy of anabolic osteoporosis treatments may be limited by bone destruction. The multi-kinase inhibitor YKL-05-099 potently inhibits salt inducible kinases (SIKs) and may represent a promising new class of bone anabolic agents. Here, we report that YKL-05-099 increases bone formation in hypogonadal female mice without increasing bone resorption. Postnatal mice with inducible, global deletion of SIK2 and SIK3 show increased bone mass, increased bone formation, and, distinct from the effects of YKL-05-099, increased bone resorption. No cell-intrinsic role of SIKs in osteoclasts was noted. In addition to blocking SIKs, YKL-05-099 also binds and inhibits CSF1R, the receptor for the osteoclastogenic cytokine M-CSF. Modeling reveals that YKL-05-099 binds to SIK2 and CSF1R in a similar manner. Dual targeting of SIK2/3 and CSF1R induces bone formation without concomitantly increasing bone resorption and thereby may overcome limitations of most current anabolic osteoporosis therapies.


Assuntos
Reabsorção Óssea/genética , Osteogênese/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Feminino , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
16.
Cell Metab ; 2(5): 331-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16271533

RESUMO

Under fasting conditions, the cAMP-responsive CREB coactivator TORC2 promotes glucose homeostasis by stimulating the gluconeogenic program in liver. Following its nuclear translocation in response to elevations in circulating glucagon, TORC2 regulates hepatic gene expression via an association with CREB on relevant promoters. Here, we show that, in parallel with their effects on glucose output, CREB and TORC2 also enhance insulin signaling in liver by stimulating expression of the insulin receptor substrate 2 (IRS2) gene. The induction of hepatic IRS2 during fasting appears critical for glucose homeostasis; knockdown of hepatic IRS2 expression leads to glucose intolerance, whereas hepatic IRS2 overexpression attenuates the gluconeogenic program and reduces fasting glucose levels. By stimulating the expression of IRS2 in conjunction with gluconeogenic genes, the CREB:TORC2 pathway thus triggers a feedback response that limits glucose output from the liver during fasting.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Jejum , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transativadores/genética , Fatores de Transcrição , Transfecção
17.
Mol Cell Biol ; 27(1): 324-39, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074815

RESUMO

SnoN is an important negative regulator of transforming growth factor beta signaling through its ability to interact with and repress the activity of Smad proteins. It was originally identified as an oncoprotein based on its ability to induce anchorage-independent growth in chicken embryo fibroblasts. However, the roles of SnoN in mammalian epithelial carcinogenesis have not been well defined. Here we show for the first time that SnoN plays an important but complex role in human cancer. SnoN expression is highly elevated in many human cancer cell lines, and this high level of SnoN promotes mitogenic transformation of breast and lung cancer cell lines in vitro and tumor growth in vivo, consistent with its proposed pro-oncogenic role. However, this high level of SnoN expression also inhibits epithelial-to-mesenchymal transdifferentiation. Breast and lung cancer cells expressing the shRNA for SnoN exhibited an increase in cell motility, actin stress fiber formation, metalloprotease activity, and extracellular matrix production as well as a reduction in adherens junction proteins. Supporting this observation, in an in vivo breast cancer metastasis model, reducing SnoN expression was found to moderately enhance metastasis of human breast cancer cells to bone and lung. Thus, SnoN plays both pro-tumorigenic and antitumorigenic roles at different stages of mammalian malignant progression. The growth-promoting activity of SnoN appears to require its ability to bind to and repress the Smad proteins, while the antitumorigenic activity can be mediated by both Smad-dependent and Smad-independent pathways and requires the activity of small GTPase RhoA. Our study has established the importance of SnoN in mammalian epithelial carcinogenesis and revealed a novel aspect of SnoN function in malignant progression.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP
18.
J Cell Biol ; 166(3): 317-23, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15289494

RESUMO

Transformation of fibroblasts by oncogenic Src causes disruption of actin stress fibers and formation of invasive adhesions called podosomes. Because the small GTPase Rho stimulates stress fiber formation, Rho inactivation by Src has been thought to be necessary for stress fiber disruption. However, we show here that Rho[GTP] levels do not decrease after transformation by activated Src. Inactivation of Rho in Src-transformed fibroblasts by dominant negative RhoA or the Rho-specific inhibitor C3 exoenzyme disrupted podosome structure as judged by localization of podosome components F-actin, cortactin, and Fish. Inhibition of Rho strongly inhibited Src-induced proteolytic degradation of the extracellular matrix. Furthermore, development of an in situ Rho[GTP] affinity assay allowed us to detect endogenous Rho[GTP] at podosomes, where it colocalized with F-actin, cortactin, and Fish. Therefore, Rho is not globally inactivated in Src-transformed fibroblasts, but is necessary for the assembly and function of structures implicated in tumor cell invasion.


Assuntos
Proteínas rho de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Microscopia de Fluorescência
19.
Artigo em Inglês | MEDLINE | ID: mdl-31428057

RESUMO

cAMP is one of the earliest described mediators of hormone action in response to physiologic stress that allows acute stress responses and adaptation in every tissue. The classic role of cAMP signaling in metabolic tissues is to regulate nutrient partitioning. In response to acute stress, such as epinephrine released during strenuous exercise or fasting, intramuscular cAMP liberates glucose from glycogen and fatty acids from triglycerides. In the long-term, activation of Gs-coupled GPCRs stimulates muscle growth (hypertrophy) and metabolic adaptation through multiple pathways that culminate in a net increase of protein synthesis, mitochondrial biogenesis, and improved metabolic efficiency. This review focuses on regulation, function, and transcriptional targets of CREB (cAMP response element binding protein) and CRTCs (CREB regulated transcriptional coactivators) in skeletal muscle and the potential for targeting this pathway to sustain muscle mass and metabolic function in type 2 diabetes and cancer. Although the muscle-autonomous roles of these proteins might render them excellent targets for both conditions, pharmacologic targeting must be approached with caution. Gain of CREB-CRTC function is associated with excess liver glucose output in type 2 diabetes, and growing evidence implicates CREB-CRTC activation in proliferation and invasion of different types of cancer cells. We conclude that deeper investigation to identify skeletal muscle specific regulatory mechanisms that govern CREB-CRTC transcriptional activity is needed to safely take advantage of their potent effects to invigorate skeletal muscle to potentially improve health in people with type 2 diabetes and cancer.

20.
Methods Mol Biol ; 1947: 361-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969428

RESUMO

Engineered G protein-coupled receptors (DREADDs, designer receptors exclusively activated by designer drugs) are convenient tools for specific activation of GPCR signaling in many cell types. DREADDs have been utilized as research tools to study numerous cellular and physiologic processes, including regulation of neuronal activity, behavior, and metabolism. Mice with random insertion transgenes and adeno-associated viruses have been widely used to express DREADDs in individual cell types. We recently created and characterized ROSA26-GsDREADD knock-in mice to allow Cre recombinase-dependent expression of a Gαs-coupled DREADD (GsD) fused to GFP in distinct cell populations in vivo. These animals also harbor a CREB-activated luciferase reporter gene for analysis of CREB activity by in vivo imaging, ex vivo imaging, or biochemical reporter assays. In this chapter, we provide detailed methods for breeding GsD animals, inducing GsD expression, stimulating GsD activity, and measuring basal and stimulated CREB reporter bioluminescence in tissues in vivo, ex vivo, and in vitro. These animals are available from our laboratory for non-profit research.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Genes Reporter , Processamento de Imagem Assistida por Computador/métodos , Medições Luminescentes/métodos , Moduladores de Transporte de Membrana/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Integrases/metabolismo , Camundongos , Especificidade de Órgãos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA