Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676068

RESUMO

Neurological disorders such as stroke, Parkinson's disease (PD), and severe traumatic brain injury (sTBI) are leading global causes of disability and mortality. This study aimed to assess the ability to walk of patients with sTBI, stroke, and PD, identifying the differences in dynamic postural stability, symmetry, and smoothness during various dynamic motor tasks. Sixty people with neurological disorders and 20 healthy participants were recruited. Inertial measurement unit (IMU) sensors were employed to measure spatiotemporal parameters and gait quality indices during different motor tasks. The Mini-BESTest, Berg Balance Scale, and Dynamic Gait Index Scoring were also used to evaluate balance and gait. People with stroke exhibited the most compromised biomechanical patterns, with lower walking speed, increased stride duration, and decreased stride frequency. They also showed higher upper body instability and greater variability in gait stability indices, as well as less gait symmetry and smoothness. PD and sTBI patients displayed significantly different temporal parameters and differences in stability parameters only at the pelvis level and in the smoothness index during both linear and curved paths. This study provides a biomechanical characterization of dynamic stability, symmetry, and smoothness in people with stroke, sTBI, and PD using an IMU-based ecological assessment.


Assuntos
Marcha , Doença de Parkinson , Equilíbrio Postural , Acidente Vascular Cerebral , Humanos , Masculino , Marcha/fisiologia , Feminino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Fenômenos Biomecânicos/fisiologia , Idoso , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia , Adulto , Lesões Encefálicas Traumáticas/fisiopatologia , Velocidade de Caminhada/fisiologia
2.
Eur J Neurol ; 30(7): 1963-1972, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971736

RESUMO

OBJECTIVE: To evaluate correlations between speech and gait parameters in the long term and under different medication and subthalamic nucleus deep brain stimulation (STN-DBS) conditions in a cohort of advanced Parkinson's disease (PD) patients. METHODS: This observational study included consecutive PD patients treated with bilateral STN-DBS. Axial symptoms were evaluated using a standardized clinical-instrumental approach. Speech and gait were assessed by perceptual and acoustic analyses and by the instrumented Timed Up and Go (iTUG) test, respectively. Disease motor severity was evaluated with the total score and subscores of the Unified Parkinson's Disease Rating Scale (UPDRS) Part III. Different stimulation and drug treatment conditions were assessed: on-stimulation/off-medication, off-stimulation/off-medication, and on-stimulation/on-medication. RESULTS: Twenty-five PD patients with a 5-year median follow-up after surgery (range 3-7 years) were included (18 males; disease duration at surgery: 10.44 [SD 4.62] years; age at surgery: 58.40 [SD 5.73] years). In the off-stimulation/off-medication and on-stimulation/on-medication conditions, patients who spoke louder had also the greater acceleration of the trunk during gait; whereas in the on-stimulation/on-medication condition only, patients with the poorer voice quality were also the worst to perform the sit to stand and gait phases of the iTUG. Conversely, patients with the higher speech rate performed well in the turning and walking phases of the iTUG. CONCLUSIONS: This study underlines the presence of different correlations between treatment effects of speech and gait parameters in PD patients treated with bilateral STN-DBS. This may allow us to better understand the common pathophysiological basis of these alterations and to develop a more specific and tailored rehabilitation approach for axial signs after surgery.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Masculino , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Fala , Resultado do Tratamento , Marcha
3.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560273

RESUMO

Current technologies based on inertial measurement units (IMUs) are considered valid and reliable tools for monitoring barbell velocity in strength training. However, the extracted outcomes are often limited to a few velocity metrics, such as mean or maximal velocity. This study aimed at validating a single IMU-based methodology to automatically obtain the barbell velocity full profile as well as key performance metrics during maximal Paralympic bench press. Seven Paralympic powerlifters (age: 30.5 ± 4.3 years, sitting height: 71.6 ± 6.8 cm, body mass: 72.5 ± 16.4 kg, one-repetition maximum: 148.4 ± 38.6 kg) performed four attempts of maximal Paralympic bench press. The barbell velocity profile and relevant metrics were automatically obtained from IMU linear acceleration through a custom-made algorithm and validated against a video-based reference system. The mean difference between devices was 0.00 ± 0.04 m·s−1 with low limits of agreement (<0.09 m·s−1) and moderate-to-good reliability (ICC: 0.55−0.90). Linear regression analysis showed large-to-very large associations between paired measurements (r: 0.57−0.91, p < 0.003; SEE: 0.02−0.06 m·s−1). The analysis of velocity curves showed a high spatial similarity and small differences between devices. The proposed methodology provided a good level of agreement, making it suitable for different applications in barbell velocity monitoring during maximal Paralympic bench press.


Assuntos
Força Muscular , Treinamento Resistido , Humanos , Adulto , Reprodutibilidade dos Testes , Terapia por Exercício , Treinamento Resistido/métodos , Aceleração
4.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590914

RESUMO

Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features-such as research design, scope, experimental settings, and applied context-were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field.


Assuntos
Doenças Musculoesqueléticas , Esportes , Dispositivos Eletrônicos Vestíveis , Humanos
5.
Sensors (Basel) ; 22(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366250

RESUMO

Neurorehabilitation research in patients with traumatic brain injury (TBI) showed how vestibular rehabilitation (VR) treatments positively affect concussion-related symptoms, but no studies have been carried out in patients with severe TBI (sTBI) during post-acute intensive neurorehabilitation. We aimed at testing this effect by combining sensor-based gait analysis and clinical scales assessment. We hypothesized that integrating VR in post-acute neurorehabilitation training might improve gait quality and activity of daily living (ADL) in sTBI patients. A two-arm, single-blind randomized controlled trial with 8 weeks of follow-up was performed including thirty sTBI inpatients that underwent an 8-week rehabilitation program including either a VR or a conventional program. Gait quality parameters were obtained using body-mounted magneto-inertial sensors during instrumented linear and curvilinear walking tests. A 4X2 mixed model ANOVA was used to investigate session−group interactions and main effects. Patients undergoing VR exhibited improvements in ADL, showing early improvements in clinical scores. Sensor-based assessment of curvilinear pathways highlighted significant VR-related improvements in gait smoothness over time (p < 0.05), whereas both treatments exhibited distinct improvements in gait quality. Integrating VR in conventional neurorehabilitation is a suitable strategy to improve gait smoothness and ADL in sTBI patients. Instrumented protocols are further promoted as an additional measure to quantify the efficacy of neurorehabilitation treatments.


Assuntos
Atividades Cotidianas , Lesões Encefálicas Traumáticas , Humanos , Método Simples-Cego , Resultado do Tratamento , Marcha , Lesões Encefálicas Traumáticas/reabilitação
6.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946325

RESUMO

The analysis of the body center of mass (BCoM) 3D kinematics provides insights on crucial aspects of locomotion, especially in populations with gait impairment such as people with amputation. In this paper, a wearable framework based on the use of different magneto-inertial measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The proposed framework was validated as a proof of concept in one transfemoral amputee against data from force plates (acceleration) and an optoelectronic system (acceleration and velocity). The impact in terms of estimation accuracy when using a sensor network rather than a single MIMU at trunk level was also investigated. The estimated velocity and acceleration reached a strong agreement (ρ > 0.89) and good accuracy compared to reference data (normalized root mean square error (NRMSE) < 13.7%) in the anteroposterior and vertical directions when using three MIMUs on the trunk and both shanks and in all three directions when adding MIMUs on both thighs (ρ > 0.89, NRMSE ≤ 14.0% in the mediolateral direction). Conversely, only the vertical component of the BCoM kinematics was accurately captured when considering a single MIMU. These results suggest that inertial sensor networks may represent a valid alternative to laboratory-based instruments for 3D BCoM kinematics quantification in lower-limb amputees.


Assuntos
Amputados , Dispositivos Eletrônicos Vestíveis , Aceleração , Fenômenos Biomecânicos , Marcha , Humanos
7.
Sensors (Basel) ; 21(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799941

RESUMO

The interest and competitiveness in sports for persons with disabilities has increased significantly in the recent years, creating a demand for technological tools supporting practice. Wearable sensors offer non-invasive, portable and overall convenient ways to monitor sports practice. This systematic review aims at providing current evidence on the application of wearable sensors in sports for persons with disability. A search for articles published in English before May 2020 was performed on Scopus, Web-Of-Science, PubMed and EBSCO databases, searching titles, abstracts and keywords with a search string involving terms regarding wearable sensors, sports and disability. After full paper screening, 39 studies were included. Inertial and EMG sensors were the most commonly adopted wearable technologies, while wheelchair sports were the most investigated. Four main target applications of wearable sensors relevant to sports for people with disability were identified and discussed: athlete classification, injury prevention, performance characterization for training optimization and equipment customization. The collected evidence provides an overview on the application of wearable sensors in sports for persons with disability, providing useful indication for researchers, coaches and trainers. Several gaps in the different target applications are highlighted altogether with recommendation on future directions.


Assuntos
Pessoas com Deficiência , Esportes , Dispositivos Eletrônicos Vestíveis , Atletas , Humanos , Monitorização Fisiológica
8.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937877

RESUMO

Gait and balance assessment in the clinical context mainly focuses on straight walking. Despite that curved trajectories and turning are commonly faced in our everyday life and represent a challenge for people with gait disorders. The adoption of curvilinear trajectories in the rehabilitation practice could have important implications for the definition of protocols tailored on individual's needs. The aim of this study was to contribute toward the quantitative characterization of straight versus curved walking using an ecological approach and focusing on healthy and neurological populations. Twenty healthy adults (control group (CG)) and 20 patients with Traumatic Brain Injury (TBI) (9 severe, sTBI-S, and 11 very severe, sTBI-VS) performed a 10 m and a Figure-of-8 Walk Test while wearing four inertial sensors that were located on both tibiae, sternum and pelvis. Spatiotemporal and gait quality indices that were related to locomotion stability, symmetry, and smoothness were obtained. The results show that spatiotemporal, stability, and symmetry-related gait patterns are challenged by curved walking both in healthy subjects and sTBI-S, whereas no difference was displayed for sTBI-VS. The use of straight walking alone to assess gait disorders is thus discouraged, particularly in patients with good walking abilities, in favor of the adoption of complementary tests that were also based on curved paths.


Assuntos
Análise da Marcha , Transtornos Neurológicos da Marcha , Caminhada , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Humanos , Masculino , Teste de Caminhada , Adulto Jovem
9.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816843

RESUMO

Despite existing evidence that gait disorders are a common consequence of severe traumatic brain injury (sTBI), the literature describing gait instability in sTBI survivors is scant. Thus, the present study aims at quantifying gait patterns in sTBI through wearable inertial sensors and investigating the association of sensor-based gait quality indices with the scores of commonly administered clinical scales. Twenty healthy adults (control group, CG) and 20 people who suffered from a sTBI were recruited. The Berg balance scale, community balance and mobility scale, and dynamic gait index (DGI) were administered to sTBI participants, who were further divided into two subgroups, severe and very severe, according to their score in the DGI. Participants performed the 10 m walk, the Figure-of-8 walk, and the Fukuda stepping tests, while wearing five inertial sensors. Significant differences were found among the three groups, discriminating not only between CG and sTBI, but also for walking ability levels. Several indices displayed a significant correlation with clinical scales scores, especially in the 10 m walking and Figure-of-8 walk tests. Results show that the use of wearable sensors allows the obtainment of quantitative information about a patient's gait disorders and discrimination between different levels of walking abilities, supporting the rehabilitative staff in designing tailored therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Análise da Marcha , Monitorização Fisiológica/instrumentação , Aceleração , Adulto , Antropometria , Estudos de Casos e Controles , Cognição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Destreza Motora , Equilíbrio Postural , Sobreviventes , Resultado do Tratamento , Teste de Caminhada , Dispositivos Eletrônicos Vestíveis
10.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543747

RESUMO

Recent technological developments have led to the production of inexpensive, non-invasive, miniature magneto-inertial sensors, ideal for obtaining sport performance measures during training or competition. This systematic review evaluates current evidence and the future potential of their use in sport performance evaluation. Articles published in English (April 2017) were searched in Web-of-Science, Scopus, Pubmed, and Sport-Discus databases. A keyword search of titles, abstracts and keywords which included studies using accelerometers, gyroscopes and/or magnetometers to analyse sport motor-tasks performed by athletes (excluding risk of injury, physical activity, and energy expenditure) resulted in 2040 papers. Papers and reference list screening led to the selection of 286 studies and 23 reviews. Information on sport, motor-tasks, participants, device characteristics, sensor position and fixing, experimental setting and performance indicators was extracted. The selected papers dealt with motor capacity assessment (51 papers), technique analysis (163), activity classification (19), and physical demands assessment (61). Focus was placed mainly on elite and sub-elite athletes (59%) performing their sport in-field during training (62%) and competition (7%). Measuring movement outdoors created opportunities in winter sports (8%), water sports (16%), team sports (25%), and other outdoor activities (27%). Indications on the reliability of sensor-based performance indicators are provided, together with critical considerations and future trends.

11.
Sensors (Basel) ; 16(2): 153, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821027

RESUMO

Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process.


Assuntos
Técnicas Biossensoriais/instrumentação , Corpo Humano , Pelve/fisiologia , Fotogrametria/instrumentação , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Campos Magnéticos
12.
Sensors (Basel) ; 15(9): 23983-4001, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393606

RESUMO

In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.


Assuntos
Aceleração , Movimento , Marcha/fisiologia , Humanos , Pelve/fisiologia , Processamento de Sinais Assistido por Computador
13.
Sensors (Basel) ; 14(10): 18625-49, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25302810

RESUMO

Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.


Assuntos
Algoritmos , Marcha/fisiologia , Locomoção/fisiologia , Aceleração , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
14.
Sci Rep ; 14(1): 19548, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174605

RESUMO

Gait symmetry is one of the most informative aspects describing the quality of gait. Many indices have been proposed to quantify gait symmetry. Among them, indices focusing on the comparison of the two body sides (e.g., Symmetry Angle, SA) and indices based on the analysis of the locomotor act as a whole, dealing with the body center of mass (e.g., Symmetry Index, SIBCoM) or lower trunk accelerometry (e.g., improved Harmonic Ratio, iHR) have been proposed. Remarkably, the relationship between these indices has received little attention so far, as well as the influence of gait speed on their values. The aim of this study is to investigate this relationship by comparing the SA, SIBCoM, and iHR, and to explore the effect of walking speed on these indices. Ten healthy adults walked for 60 s on a treadmill at seven different speeds (from 0.28 to 1.95 m s-1) and simulate an asymmetric gait (ASYM) at 0.83 m s-1. Marker-based trajectories were recorded, and the body center of mass 3D trajectory was obtained. Simultaneously, lower trunk 3D linear accelerations were collected using a triaxial accelerometer. SIBCoM, iHR, and SA were calculated for each stride, each anatomical direction, and each condition. Perfect symmetry was never displayed in any axes and any indices. Significant differences existed between SIBCoM, and iHR in all anatomical directions (p < 0.0001). The walking speed significantly affected SIBCoM and iHR values in anteroposterior and craniocaudal directions, but not in mediolateral. Conversely, no walking speed effect was found for SA (p = 0.28). All three indices significantly discriminated between ASYM and the corresponding walking condition (p < 0.05). Gait symmetry may differ significantly according to the data source, mathematical approach, and walking speed. Healthy individuals display an asymmetrical gait and acknowledging this aspect is crucial when establishing rehabilitation objectives and assessing the quality of gait in the clinical setting.


Assuntos
Marcha , Velocidade de Caminhada , Caminhada , Humanos , Velocidade de Caminhada/fisiologia , Masculino , Adulto , Feminino , Marcha/fisiologia , Caminhada/fisiologia , Acelerometria/métodos , Fenômenos Biomecânicos , Adulto Jovem , Análise da Marcha/métodos , Teste de Esforço/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38958287

RESUMO

ABSTRACT: This systematic review aimed to 1) verify bilateral symmetry assumption in manual wheelchair (MWC) propulsion in daily-life and sports, and its relationship with injury risk and sports performance; 2) evaluate methods for assessing bilateral symmetry. Scopus, Web-Of-Science, PubMed, and EBSCO databases were searched for articles published before January 2024 investigating bilateral symmetry in MWC users and/or healthy participants during MWC propulsion. Two independent reviewers screened, extracted data, and assessed methodological quality of retrieved papers. Twenty-five studies were included. In daily ground-level propulsion, minimal asymmetries were observed in kinematic, kinetic, and temporal parameters when averaging ≥3 push cycles. In the sports context, diverse findings emerged, ranging from up to 27% side-to-side differences in propulsion kinetics and kinematics during sprinting, to descriptions of both symmetrical and asymmetrical upper extremity motions. Limited evidence exists regarding the role of asymmetry in MWC propulsion as a risk factor for injury and pain, as well as the association between sprinting performance and symmetry. In conclusion, bilateral symmetry assumption in MWC propulsion is valid only under specific conditions (i.e., slow/moderate speed, averaging ≥3 push cycles, smooth level ground). The wheeling environment and inter-individual variability impact symmetry research outcome and require consideration in future studies.

16.
Am J Phys Med Rehabil ; 103(8): 753-760, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547030

RESUMO

BACKGROUND: In Paralympic sports, classification ensures fair competition by grouping athletes based on their impairments. The International Paralympic Committee has provided scientific principles to guide evidence-based classification procedures. In Paralympic Powerlifting, athletes compete in one class, divided by sex and bodyweight categories, overlooking impairment impact on performance. OBJECTIVE: This study aimed to establish a consensus among international Paralympic powerlifting experts regarding classification and performance issues to guide future research. METHODS: A two-round Delphi study was conducted involving 26 experts. The study sought to identify the adequacy of the current classification and competition systems, explore the impact of various impairments, and lay the initial groundwork for a performance determinants model. RESULTS: Experts agreed that existing classification and competition systems in Paralympic powerlifting do not align with Paralympic standards. Impairments from neurological conditions and those causing anthropometric changes were suggested to have opposing performance impacts. Initial directions for a performance determinants model were outlined, focusing on arm and bar kinematics, anthropometry, and body composition. CONCLUSIONS: This study underscores the need for comprehensive research in Paralympic powerlifting, revealing critical discrepancies between current classification system and Paralympic standards. Insights into the multifaceted relationship between impairments and performance are provided to shape the future of Paralympic powerlifting research.


Assuntos
Desempenho Atlético , Consenso , Técnica Delphi , Paratletas , Levantamento de Peso , Humanos , Paratletas/classificação , Desempenho Atlético/classificação , Desempenho Atlético/fisiologia , Masculino , Feminino , Esportes para Pessoas com Deficiência/classificação , Adulto , Pessoas com Deficiência/classificação
17.
Eur J Phys Rehabil Med ; 60(1): 27-36, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997324

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a chronic inflammatory, demyelinating, degenerative disease of the central nervous system and the second most frequent cause of permanent disability in young adults. One of the most common issues concerns the ability to perform postural and gait tasks while simultaneously completing a cognitive task (namely, dual-task DT). AIM: Assessing cognitive-motor dual-task training effectiveness in patients with Multiple Sclerosis (PwMS) for dynamic gait quality when walking on straight, curved, and blindfolded paths. DESIGN: Two-arm single-blind randomized controlled trial. Follow-up at 8 weeks. SETTING: Neurorehabilitation Hospital. POPULATION: A sample of 42 PwMS aged 28-71, with a score of 4.00±1.52 on the Expanded Disability Status Scale were recruited. METHODS: Participants were randomized in conventional (CTg) neurorehabilitation and dual-task training (DTg) groups and received 12 sessions, 3 days/week/4 weeks. They were assessed at baseline (T0), after the treatment (T1), and 8 weeks after the end of the treatment (T2) through Mini-BESTest, Tinetti Performance Oriented Mobility Assessment, Modified Barthel Index, and a set of spatiotemporal parameters and gait quality indices related to stability, symmetry, and smoothness of gait extracted from initial measurement units (IMUs) data during the execution of the 10-meter Walk Test (10mWT), the Figure-of-8 Walk Test (Fo8WT) and the Fukuda Stepping Test (FST). RESULTS: Thirty-one PwMS completed the trial at T2. Significant improvement within subjects was found in Mini-BESTest scores for DTg from T0 to T1. The IMU-based assessment indicated significant differences in stability (P<0.01) and smoothness (P<0.05) measures between CTg and DTg during 10mWT and Fo8WT. Substantial improvements (P<0.017) were also found in the inter-session comparison, primarily for DTg, particularly for stability, symmetry, and smoothness measures. CONCLUSIONS: This study supports the effectiveness of DT in promoting dynamic motor abilities in PwMS. CLINICAL REHABILITATION IMPACT: Cognitive-motor DT implemented into the neurorehabilitation conventional program could be a useful strategy for gait and balance rehabilitation.


Assuntos
Esclerose Múltipla , Adulto Jovem , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/reabilitação , Método Simples-Cego , Terapia por Exercício , Marcha/fisiologia , Cognição , Equilíbrio Postural/fisiologia
18.
J Appl Biomech ; 29(5): 622-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23182857

RESUMO

The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment.


Assuntos
Aceleração , Artrometria Articular/instrumentação , Sistemas Microeletromecânicos/instrumentação , Modelos Biológicos , Postura/fisiologia , Corrida/fisiologia , Tronco/fisiologia , Adulto , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Monitorização Ambulatorial/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Front Sports Act Living ; 5: 1290964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022778

RESUMO

Introduction: In Paralympic powerlifting competitions, movement execution symmetry is a technical requirement influenced by individual athlete characteristics and motor strategies. Identifying the elements associated with individual motor strategies can offer valuable insight for improving sport performance. Therefore, this case series study aimed to explore muscle activation symmetry and its intra- and inter-individual variability to determine the muscles mostly related to individual motor strategies in elite Paralympic powerlifters. Methods: Bilateral electromyographic activation of the anterior deltoid (AD), pectoralis major (PM), latissimus dorsi (LD), triceps (TRI) and external oblique (EO) muscles were analysed in five elite Paralympic powerlifters while performing four sets of one-repetition maximum of Paralympic bench press. Muscle activation symmetry indexes (SI) were obtained and transformed to consider individual-independent evaluation. The coefficient of variation (CV), variance ratio (VR), and mean deviation (MD) were computed to assess inter- and intra-individual variability in electromyographic waveforms and SI. Results: Both transformed and non-transformed SI indicated overall symmetric activation in DA, PM, TRI, and LD. Transformed SI revealed asymmetrical muscle activation of EO when grouping data (mean bilateral difference: 10%). Athletes exhibited low intra-individual SI variability in all analysed muscles (CV < 10%) and low inter-individual variability in DA, PM, LD, and TRI (CV < 10%; VR: 4%-11%; MD: 29%-43%). In contrast, higher inter-individual variability was observed in EO (CV: 23%; VR: 23%; MD: 72%-81%). Conclusion: The highest variability and asymmetry in abdominal muscle activation among athletes emphasize the importance of personalized training approaches for targeting these muscles due to their role in individualizing motor strategies.

20.
J Neurol ; 270(9): 4342-4353, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37208527

RESUMO

OBJECTIVE: To assess the long-term effects of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on gait in a cohort of advanced Parkinson's Disease (PD) patients. METHODS: This observational study included consecutive PD patients treated with bilateral STN-DBS. Different stimulation and drug treatment conditions were assessed: on-stimulation/off-medication, off-stimulation/off-medication, and on-stimulation/on-medication. Each patient performed the instrumented Timed Up and Go test (iTUG). The instrumental evaluation of walking ability was carried out with a wearable inertial sensor containing a three-dimensional (3D) accelerometer, gyroscope, and magnetometer. This device could provide 3D linear acceleration, angular velocity, and magnetic field vector. Disease motor severity was evaluated with the total score and subscores of the Unified Parkinson Disease Rating Scale part III. RESULTS: Twenty-five PD patients with a 5-years median follow-up after surgery (range 3-7) were included (18 men; mean disease duration at surgery 10.44 ± 4.62 years; mean age at surgery 58.40 ± 5.73 years). Both stimulation and medication reduced the total duration of the iTUG and most of its different phases, suggesting a long-term beneficial effect on gait after surgery. However, comparing the two treatments, dopaminergic therapy had a more marked effect in all test phases. STN-DBS alone reduced total iTUG duration, sit-to-stand, and second turn phases duration, while it had a lower effect on stand-to-sit, first turn, forward walking, and walking backward phases duration. CONCLUSIONS: This study highlighted that in the long-term after surgery, STN-DBS may contribute to gait and postural control improvement when used together with dopamine replacement therapy, which still shows a substantial beneficial effect.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Masculino , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Equilíbrio Postural , Resultado do Tratamento , Estudos de Tempo e Movimento , Marcha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA