Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985561

RESUMO

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Marchantia/genética , Adaptação Biológica , Embriófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Marchantia/fisiologia , Anotação de Sequência Molecular , Transdução de Sinais , Transcrição Gênica
2.
Cell ; 158(1): 98-109, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995981

RESUMO

Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Metilação de DNA , Elementos de DNA Transponíveis , Estudo de Associação Genômica Ampla , Histonas/química , Histonas/genética , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Annu Rev Genet ; 54: 121-149, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32857637

RESUMO

Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.


Assuntos
Epigênese Genética/genética , Variação Genética/genética , Histonas/genética , Animais , Diferenciação Celular/genética , Replicação do DNA/genética , Desenvolvimento Embrionário/genética , Humanos , Nucleossomos/genética
4.
Cell ; 151(1): 194-205, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23000270

RESUMO

Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.


Assuntos
Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Pólen/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Animais , Arabidopsis/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Mamíferos/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Sementes/genética , Sementes/metabolismo
5.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922125

RESUMO

We propose that several chromatin-mediated regulatory processes are dominated by source-sink relationships in which factors operate as 'sources' to produce or provide a resource and compete with each other to occupy separate 'sinks'. In this model, large portions of genomic DNA operate as 'sinks', which are filled by 'sources', such as available histone variants, covalent modifications to histones, the readers of these modifications and non-coding RNAs. Competing occupation for the sinks by different sources leads to distinct states of genomic equilibrium in differentiated cells. During dynamic developmental events, such as sexual reproduction, we propose that dramatic and rapid reconfiguration of source-sink relationships modifies chromatin states. We envision that re-routing of sources could occur by altering the dimensions of the sink, by reconfiguration of existing sink occupation or by varying the size of the source, providing a central mechanism to explain a plethora of epigenetic phenomena, which contribute to phenotypic variegation, zygotic genome activation and nucleolar dominance.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Epigênese Genética
6.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438802

RESUMO

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNA
8.
Semin Cell Dev Biol ; 135: 93-101, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35249811

RESUMO

Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.


Assuntos
Heterocromatina , Histonas , Animais , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Cromatina , Regiões Promotoras Genéticas , Mamíferos/genética , Biologia , Nucleossomos
9.
Plant Cell ; 34(7): 2462-2465, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238371

RESUMO

Gregor Mendel's work on segregation of traits in plants established the basic methodology and rules of genetics. The interruption of Mendel's research activities in 1870 impeded the immediate recognition of the value of his work until the dawn of the 20th century. Only then were his founding laws of genetics validated, propelling the development of biological research toward the birth of molecular biology in the second half of the 20th century. While molecular plant genetics can be viewed as the spiritual heir of Mendel's research, one might wonder whether in the 21st century Gregor Mendel would prefer to practice scientific approaches other than molecular genetics such as population genetics, comparative genomics, or the emerging field of evo-chromo. In this perspective, I review aspects of these fields that might have attracted or perplexed a 21st century Mendel.


Assuntos
Genômica , Plantas , Biologia Molecular , Fenótipo
10.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976122

RESUMO

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Assuntos
Embriófitas , Marchantia , Evolução Biológica , Células Germinativas Vegetais , Marchantia/genética , Filogenia
11.
Genes Dev ; 31(1): 72-83, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115468

RESUMO

Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Análise de Célula Única , Animais , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Camundongos , Plantas Geneticamente Modificadas , Reprodução/genética , Fatores Sexuais
12.
Trends Genet ; 37(10): 882-889, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34210514

RESUMO

It is generally considered that Polycomb Repressive Complex (PRC)2 deposits the histone mark H3K27me3 on silent protein-coding genes, while transposable elements are repressed by DNA and/or H3K9 methylation. Yet, there is increasing evidence that PRC2 also targets and even silences transposable elements in representatives of several distantly related eukaryotic lineages. In plants and animals, H3K27me3 is present on transposable elements in mutants and specific cell types devoid of DNA methylation. In this Opinion, we summarize the experimental evidence for this phenomenon across the eukaryotic kingdom, and discuss its functional and evolutionary significance. We hypothesize that an ancestral role of Polycomb group (PcG) proteins was to silence transposable elements.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas do Grupo Polycomb/metabolismo , Animais , Metilação de DNA , Histonas/metabolismo , Humanos , Complexo Repressor Polycomb 2/metabolismo
13.
Plant Cell Physiol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597891

RESUMO

The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino-acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, NASP (nuclear autoantigenic sperm protein). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knockout mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.

14.
New Phytol ; 241(3): 1000-1006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37936346

RESUMO

We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.


Assuntos
Briófitas , Marchantia , Animais , Marchantia/genética , Impressão Genômica , Estágios do Ciclo de Vida
15.
Plant Physiol ; 194(1): 412-421, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757882

RESUMO

Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sementes/genética , Sementes/metabolismo , Reprodução , Fertilização , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Células Germinativas/metabolismo
16.
Nucleic Acids Res ; 50(9): 5014-5028, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489065

RESUMO

The heterodimeric histone chaperone FACT, consisting of SSRP1 and SPT16, contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This suggests that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS of active genes.


Assuntos
Arabidopsis , Chaperonas de Histonas , Nucleossomos , Sítio de Iniciação de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fosforilação , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo
17.
PLoS Genet ; 17(6): e1009601, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34086674

RESUMO

Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A.W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Técnicas de Cultura de Células , Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Evolução Molecular , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/metabolismo , Fosforilação , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transgenes
18.
Development ; 147(11)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32439757

RESUMO

Plants are capable of regenerating new organs after mechanical injury. The regeneration process involves genome-wide reprogramming of transcription, which usually requires dynamic changes in the chromatin landscape. We show that the histone 3 variant HISTONE THREE RELATED 15 (H3.15) plays an important role in cell fate reprogramming during plant regeneration in Arabidopsis H3.15 expression is rapidly induced upon wounding. Ectopic overexpression of H3.15 promotes cell proliferation to form a larger callus at the wound site, whereas htr15 mutation compromises callus formation. H3.15 is distinguished from other Arabidopsis histones by the absence of the lysine residue 27 that is trimethylated by the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) in constitutively expressed H3 variants. Overexpression of H3.15 promotes the removal of the transcriptional repressive mark H3K27me3 from chromatin, which results in transcriptional de-repression of downstream genes, such as WUSCHEL RELATED HOMEOBOX 11 (WOX11). Our results reveal a new mechanism for a release from PRC2-mediated gene repression through H3.15 deposition into chromatin, which is involved in reprogramming cell fate to produce pluripotent callus cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/classificação , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metilação , Mutagênese Sítio-Dirigida , Filogenia , Plantas Geneticamente Modificadas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
New Phytol ; 240(5): 2085-2101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823324

RESUMO

Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.


Assuntos
Anthocerotophyta , Briófitas , Bryopsida , Filogenia , Cromatina , Heterocromatina/genética , Eucromatina/genética , Briófitas/genética , Anthocerotophyta/genética , Bryopsida/genética
20.
New Phytol ; 238(1): 113-124, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627730

RESUMO

Elongation factors modulate the efficiency of mRNA synthesis by RNA polymerase II (RNAPII) in the context of chromatin, thus contributing to implement proper gene expression programmes. The zinc-finger protein elongation factor 1 (ELF1) is a conserved transcript elongation factor (TEF), whose molecular function so far has not been studied in plants. Using biochemical approaches, we examined the interaction of Arabidopsis ELF1 with DNA and histones in vitro and with the RNAPII elongation complex in vivo. In addition, cytological assays demonstrated the nuclear localisation of the protein, and by means of double-mutant analyses, interplay with genes encoding other elongation factors was explored. The genome-wide distribution of ELF1 was addressed by chromatin immunoprecipitation. ELF1 isolated from Arabidopsis cells robustly copurified with RNAPII and various other elongation factors including SPT4-SPT5, SPT6, IWS1, FACT and PAF1C. Analysis of a CRISPR-Cas9-mediated gene editing mutant of ELF1 revealed distinct genetic interactions with mutants deficient in other elongation factors. Moreover, ELF1 associated with genomic regions actively transcribed by RNAPII. However, ELF1 occupied only c. 33% of the RNAPII transcribed loci with preference for inducible rather than constitutively expressed genes. Collectively, these results establish that Arabidopsis ELF1 shares several characteristic attributes with RNAPII TEFs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Elongação da Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA