Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 368(3): 514-523, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606762

RESUMO

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPARγ expression in endothelial cells (ECs) in these side effects, EC-targeted PPARγ knockout (Pparg ΔEC) mice were placed on a high-fat diet to promote PPARγ agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with Pparg-floxed wild-type control (Pparg f/f) mice, Pparg ΔEC treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion. Interestingly, histologic assessment confirmed significant rosiglitazone-mediated capillary dilation within white adipose tissue of Pparg f/f mice, but not Pparg ΔEC mice. Analysis of ECs isolated from untreated mice in both strains suggested the involvement of changes in endothelial junction formation. Specifically, compared with cells from Pparg f/f mice, Pparg ΔEC cells had a 15-fold increase in focal adhesion kinase, critically important in EC focal adhesions, and >3-fold significant increase in vascular endothelial cadherin, the main component of focal adhesions. Together, these results indicate that rosiglitazone has direct effects on the endothelium via PPARγ activation and point toward a critical role for PPARγ in ECs during rosiglitazone-mediated plasma volume expansion.


Assuntos
Tecido Adiposo/metabolismo , Células Endoteliais/metabolismo , Hipoglicemiantes/farmacologia , PPAR gama/deficiência , Rosiglitazona/farmacologia , Remodelação Vascular/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Animais , Células Endoteliais/efeitos dos fármacos , Deleção de Genes , Masculino , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Volume Plasmático/efeitos dos fármacos , Volume Plasmático/fisiologia , Remodelação Vascular/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 27(9): 2069-2073, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284804

RESUMO

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic ß-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output. Small molecule GK activators (GKAs) have been identified that increase enzyme activity by binding to an allosteric site. GKAs offer a novel approach for the treatment of Type 2 Diabetes Mellitus (T2DM) and as such have garnered much attention. We now report the design, synthesis, and biological evaluation of a novel series of 2,5,6-trisubstituted indole derivatives that act as highly potent GKAs. Among them, Compound 1 was found to possess high in vitro potency, excellent physicochemical properties, and good pharmacokinetic profile in rodents. Oral administration of Compound 1 at doses as low as 0.03mg/kg led to robust blood glucose lowering efficacy in 3week high fat diet-fed mice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/química , Ativadores de Enzimas/uso terapêutico , Glucoquinase/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Indóis/química , Indóis/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/farmacologia , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Indóis/farmacocinética , Indóis/farmacologia , Insulina/sangue , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Bioorg Med Chem Lett ; 27(9): 2063-2068, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284809

RESUMO

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic ß-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Glucoquinase/metabolismo , Hipoglicemiantes/farmacologia , Piridinas/farmacologia , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Piridinas/química , Piridinas/farmacocinética , Piridinas/uso terapêutico
4.
Nat Med ; 13(6): 695-702, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17529981

RESUMO

The metabolism of vitamin A and the diverse effects of its metabolites are tightly controlled by distinct retinoid-generating enzymes, retinoid-binding proteins and retinoid-activated nuclear receptors. Retinoic acid regulates differentiation and metabolism by activating the retinoic acid receptor and retinoid X receptor (RXR), indirectly influencing RXR heterodimeric partners. Retinoic acid is formed solely from retinaldehyde (Rald), which in turn is derived from vitamin A. Rald currently has no defined biologic role outside the eye. Here we show that Rald is present in rodent fat, binds retinol-binding proteins (CRBP1, RBP4), inhibits adipogenesis and suppresses peroxisome proliferator-activated receptor-gamma and RXR responses. In vivo, mice lacking the Rald-catabolizing enzyme retinaldehyde dehydrogenase 1 (Raldh1) resisted diet-induced obesity and insulin resistance and showed increased energy dissipation. In ob/ob mice, administrating Rald or a Raldh inhibitor reduced fat and increased insulin sensitivity. These results identify Rald as a distinct transcriptional regulator of the metabolic responses to a high-fat diet.


Assuntos
Adipogenia/fisiologia , Dieta/efeitos adversos , Inibidores do Crescimento/fisiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Retinaldeído/fisiologia , Células 3T3-L1 , Adipogenia/genética , Animais , Feminino , Inibidores do Crescimento/deficiência , Inibidores do Crescimento/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Células NIH 3T3 , Obesidade/fisiopatologia , Coelhos , Retinaldeído/biossíntese , Retinaldeído/genética
5.
Mol Metab ; 69: 101680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696925

RESUMO

OBJECTIVE: Renal fibrosis is a hallmark for chronic kidney disease (CKD), and often leads to end stage renal disease (ESRD). However, limited interventions are available clinically to ameliorate or reverse renal fibrosis. METHODS: Herein, we evaluated whether blockade of endotrophin through neutralizing antibodies protects from renal fibrosis in the podocyte insult model (the "POD-ATTAC" mouse). We determined the therapeutic effects of endotrophin targeted antibody through assessing renal function, renal inflammation and fibrosis at histological and transcriptional levels, and podocyte regeneration. RESULTS: We demonstrated that neutralizing endotrophin antibody treatment significantly ameliorates renal fibrosis at the transcriptional, morphological, and functional levels. In the antibody treatment group, expression of pro-inflammatory and pro-fibrotic genes was significantly reduced, normal renal structures were restored, collagen deposition was decreased, and proteinuria and renal function were improved. We further performed a lineage tracing study confirming that podocytes regenerate as de novo podocytes upon injury and loss, and blockade of endotrophin efficiently enhances podocyte-specific marker expressions. CONCLUSION: Combined, we provide pre-clinical evidence supporting neutralizing endotrophin as a promising therapy for intervening with renal fibrosis in CKD, and potentially in other chronic fibro-inflammatory diseases.


Assuntos
Podócitos , Insuficiência Renal Crônica , Camundongos , Animais , Podócitos/patologia , Fragmentos de Peptídeos/metabolismo , Fibrose , Insuficiência Renal Crônica/metabolismo , Anticorpos/metabolismo
6.
Mol Pharmacol ; 82(1): 68-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496518

RESUMO

Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expression-based scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , PPAR gama/agonistas , PPAR gama/metabolismo , Transcriptoma/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica/métodos , Resistência à Insulina/genética , Ligantes , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
7.
Bioinformatics ; 27(20): 2775-81, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21846737

RESUMO

MOTIVATION: Off-target activity commonly exists in RNA interference (RNAi) screens and often generates false positives. Existing analytic methods for addressing the off-target effects are demonstrably inadequate in RNAi confirmatory screens. RESULTS: Here, we present an analytic method assessing the collective activity of multiple short interfering RNAs (siRNAs) targeting a gene. Using this method, we can not only reduce the impact of off-target activities, but also evaluate the specific effect of an siRNA, thus providing information about potential off-target effects. Using in-house RNAi screens, we demonstrate that our method obtains more reasonable and sensible results than current methods such as the redundant siRNA activity (RSA) method, the RNAi gene enrichment ranking (RIGER) method, the frequency approach and the t-test. CONTACT: xiaohua_zhang@merck.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ensaios de Triagem em Larga Escala , Interferência de RNA , Doença de Alzheimer/genética , Interpretação Estatística de Dados , Diabetes Mellitus/genética , Técnicas de Silenciamento de Genes , Genômica/métodos , Herpesvirus Humano 3/genética , Humanos , RNA Interferente Pequeno
8.
Mol Pharmacol ; 80(6): 1156-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937665

RESUMO

Glucokinase activators (GKAs) are small-molecule agents that enhance glucose sensing by pancreatic ß cells and glucose metabolism by hepatocytes. There is strong interest in these agents as potential therapies for type 2 diabetes. Here, we report key pharmacokinetic and pharmacodynamic findings from preclinical studies of the GKA 3-[[6-(ethylsulfonyl)-3-pyridinyl]oxy]-5-[(1S)-2-hydroxy-1-methylethoxy]-N-(1-methyl-1H-pyrazol-3-yl)benzamide (MK-0941). Incubated in vitro with recombinant human glucokinase, 1 µM MK-0941 lowered the S(0.5) of this enzyme for glucose from 6.9 to 1.4 mM and increased the maximum velocity of glucose phosphorylation by 1.5-fold. In 2.5 and 10 mM glucose, the EC(50) values for activation of GK by MK-0941 were 0.240 and 0.065 µM, respectively. Treatment of isolated rat islets of Langerhans and hepatocytes with 10 µM MK-0941 increased insulin secretion by 17-fold and glucose uptake up to 18-fold, respectively. MK-0941 exhibited strong glucose-lowering activity in C57BL/6J mice maintained on a high-fat diet (HFD), db/db mice, HFD plus low-dose streptozotocin-treated mice, and nondiabetic dogs. In both mice and dogs, oral doses of MK-0941 were rapidly absorbed and rapidly cleared from the blood; plasma levels reached maximum within 1 h and fell thereafter with a half-life of ~2 h. During oral glucose tolerance testing in dogs, MK-0941 reduced total area-under-the-curve postchallenge (0-2 h) plasma glucose levels by up to 48% compared with vehicle-treated controls. When administered twice daily to mice for 16 days, and once daily to the dog for 4 days, MK-0941 remained efficacious on successive days. These findings support further investigation of MK-0941 as a potential therapeutic agent for treatment of type 2 diabetes.


Assuntos
Benzamidas/farmacocinética , Diabetes Mellitus Tipo 2/enzimologia , Modelos Animais de Doenças , Glucoquinase/metabolismo , Hipoglicemiantes/farmacocinética , Sulfonas/farmacocinética , Animais , Benzamidas/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sulfonas/farmacologia
9.
Sci Rep ; 11(1): 7934, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846426

RESUMO

Parkinson's disease (PD) is associated with neuronal damage in the brain and gut. This work compares changes in the enteric nervous system (ENS) of commonly used mouse models of PD that exhibit central neuropathy and a gut phenotype. Enteric neuropathy was assessed in five mouse models: peripheral injection of MPTP; intracerebral injection of 6-OHDA; oral rotenone; and mice transgenic for A53T variant human α-synuclein with and without rotenone. Changes in the ENS of the colon were quantified using pan-neuronal marker, Hu, and neuronal nitric oxide synthase (nNOS) and were correlated with GI function. MPTP had no effect on the number of Hu+ neurons but was associated with an increase in Hu+ nuclear translocation (P < 0.04). 6-OHDA lesioned mice had significantly fewer Hu+ neurons/ganglion (P < 0.02) and a reduced proportion of nNOS+ neurons in colon (P < 0.001). A53T mice had significantly fewer Hu+ neurons/area (P < 0.001) and exhibited larger soma size (P < 0.03). Treatment with rotenone reduced the number of Hu+ cells/mm2 in WT mice (P < 0.006) and increased the proportion of Hu+ translocated cells in both WT (P < 0.02) and A53T mice (P < 0.04). All PD models exhibited a degree of enteric neuropathy, the extent and type of damage to the ENS, however, was dependent on the model.


Assuntos
Trato Gastrointestinal/patologia , Pseudo-Obstrução Intestinal/patologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Doença Aguda , Animais , Contagem de Células , Doença Crônica , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Fezes , Gânglios/efeitos dos fármacos , Gânglios/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Oxidopamina , Fenótipo , Rotenona/farmacologia
10.
Bioorg Med Chem Lett ; 20(20): 6088-92, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20832306
11.
Clin Cancer Res ; 15(10): 3265-76, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19447867

RESUMO

PURPOSE: Adipocytes represent one of the most abundant constituents of the mammary gland. They are essential for mammary tumor growth and survival. Metabolically, one of the more important fat-derived factors ("adipokines") is adiponectin (APN). Serum concentrations of APN negatively correlate with body mass index and insulin resistance. To explore the association of APN with breast cancer and tumor angiogenesis, we took an in vivo approach aiming to study its role in the mouse mammary tumor virus (MMTV)-polyoma middle T antigen (PyMT) mammary tumor model. EXPERIMENTAL DESIGN: We compared the rates of tumor growth in MMTV-PyMT mice in wild-type and APN-null backgrounds. RESULTS: Histology and micro-positron emission tomography imaging show that the rate of tumor growth is significantly reduced in the absence of APN at early stages. PyMT/APN knockout mice exhibit a reduction in their angiogenic profile resulting in nutrient deprivation of the tumors and tumor-associated cell death. Surprisingly, in more advanced malignant stages of the disease, tumor growth develops more aggressively in mice lacking APN, giving rise to a larger tumor burden, an increase in the mobilization of circulating endothelial progenitor cells, and a gene expression fingerprint indicative of more aggressive tumor cells. CONCLUSIONS: These observations highlight a novel important contribution of APN in mammary tumor development and angiogenesis, indicating that APN has potent angio-mimetic properties in tumor vascularization. However, in tumors deprived of APN, this antiangiogenic stress results in an adaptive response that fuels tumor growth through mobilization of circulating endothelial progenitor cells and the development of mechanisms enabling massive cell proliferation despite a chronically hypoxic microenvironment.


Assuntos
Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/genética , Neovascularização Patológica/genética , Adiponectina/sangue , Adiponectina/genética , Adiponectina/metabolismo , Animais , Antígenos Virais de Tumores/genética , Apoptose , Western Blotting , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacocinética , Masculino , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , PPAR gama/agonistas , PPAR gama/metabolismo , Polyomavirus/genética , Tomografia por Emissão de Pósitrons , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazolidinedionas/farmacologia , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
12.
Biochem J ; 418(2): 413-20, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19035854

RESUMO

GLUT4 (glucose transporter 4) plays important roles in glucose homoeostasis in vivo. GLUT4 expression and function are diminished in diabetic human and animal subjects. The goal of the present study is to develop a cell-based assay for identifying negative regulators of GLUT4 translocation as potential targets for the treatment of Type 2 diabetes. Traditional GLUT4 translocation assays performed in differentiated myocytes or adipocytes are difficult to perform, particularly in HTS (high-throughput screening) mode. In the present study, we stably co-expressed c-Myc and eGFP [enhanced GFP (green fluorescent protein)] dual-tagged recombinant GLUT4 with recombinant IRS1 (insulin receptor substrate 1) in HEK-293 cells (human embryonic kidney cells) (HEK-293.IRS1.GLUT4 cells). Insulin treatment stimulated both glucose uptake and GLUT4 translocation in these cells. GLUT4 translocation is quantified by a TRF (time-resolved fluorescence) assay in a 96-well HTS format. TRF assays confirmed insulin-stimulated GLUT4 translocation, which can be inhibited by PI3K (phosphoinositide 3-kinase) or Akt [also called PKB (protein kinase B)] inhibitors. Treatment with palmitate increased IRS1 serine phosphorylation and reduced insulin-stimulated Akt phosphorylation and GLUT4 translocation, indicating insulin resistance. Knockdown of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and PTP1B (protein tyrosine phosphatase 1B) gene expression by siRNA (small interfering RNA) treatment significantly increased GLUT4 translocation only in cells treated with palmitate but not in untreated cells. Similar results were obtained on treatment with siRNA of JNK1 (c-Jun N-terminal kinase 1), S6K1 (ribosomal protein S6 kinase, 70 kDa, polypeptide 1) and PKC(theta) (protein kinase C theta). In summary, we have established and validated a novel GLUT4 translocation assay that is optimal for identifying negative regulators of GLUT4 translocation. In combination with more physiologically relevant secondary assays in myotubes and adipocytes, this assay system can be used to identify potential novel therapeutic targets for the treatment of Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Células Cultivadas , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Hipoglicemiantes/isolamento & purificação , Insulina/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Isoenzimas/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , PTEN Fosfo-Hidrolase/genética , Ácido Palmítico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/genética , Proteína Quinase C-theta , Transporte Proteico , Proteínas Quinases S6 Ribossômicas/genética , Transfecção
13.
Neurogastroenterol Motil ; 32(3): e13755, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709672

RESUMO

BACKGROUND: Chronic stress exacerbates motor deficits and increases dopaminergic cell loss in several rodent models of Parkinson's disease (PD). However, little is known about effects of stress on gastrointestinal (GI) dysfunction, a common non-motor symptom of PD. We aimed to determine whether chronic stress exacerbates GI dysfunction in the A53T mouse model of PD and whether this relates to changes in α-synuclein distribution. METHODS: Chronic isolation stress was induced by single-housing WT and homozygote A53T mice between 5 and 15 months of age. GI and motor function were compared with mice that had been group-housed. KEY RESULTS: Chronic isolation stress increased plasma corticosterone and exacerbated deficits in colonic propulsion and whole-gut transit in A53T mice and also increased motor deficits. However, our results indicated that the novel environment-induced defecation response, a common method used to evaluate colorectal function, was not a useful test to measure exacerbation of GI dysfunction, most likely because of the reported reduced level of anxiety in A53T mice. A53T mice had lower corticosterone levels than WT mice under both housing conditions, but single-housing increased levels for both genotypes. Enteric neuropathy was observed in aging A53T mice and A53T mice had a greater accumulation of alpha-synuclein (αsyn) in myenteric ganglia under both housing conditions. CONCLUSIONS & INFERENCES: Chronic isolation stress exacerbates PD-associated GI dysfunction, in addition to increasing motor deficits. However, these changes in GI symptoms are not directly related to corticosterone levels, worsened enteric neuropathy, or enteric αsyn accumulation.


Assuntos
Sistema Nervoso Entérico/patologia , Motilidade Gastrointestinal/fisiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia , Estresse Psicológico/complicações , Animais , Sistema Nervoso Entérico/fisiopatologia , Camundongos , Camundongos Transgênicos , Transtornos Parkinsonianos/fisiopatologia , Isolamento Social/psicologia
14.
Biochemistry ; 48(2): 492-8, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19105608

RESUMO

Previous studies demonstrated that the naturally occurring electrophile and PPARgamma ligand, nitrolinoleic acid (NO(2)-LA), exists as a mixture of four regioisomers [Alexander, R. L., et al. (2006) Biochemistry 45, 7889-7896]. We hypothesized that these alternative isomers have distinct bioactivities; therefore, to determine if the regioisomers are quantitatively or qualitatively different with respect to PPARgamma activation, NO(2)-LA was separated into three fractions which were identified by NMR (13-NO(2)-LA, 12-NO(2)-LA, and a mixture of 9- and 10-NO(2)-LA) and characterized for PPARgamma interactions. A competition radioligand binding assay showed that all three NO(2)-LA fractions had similar binding affinities for PPARgamma (IC(50) = 0.41-0.60 microM) that were comparable to that of the pharmaceutical ligand, rosiglitazone (IC(50) = 0.25 microM). However, when PPARgamma-dependent transcription activation was examined, there were significant differences observed among the NO(2)-LA fractions. Each isomer behaved as a partial agonist in this reporter gene assay; however, the 12-NO(2) derivative was the most potent with respect to maximum activation of PPARgamma and an EC(50) of 0.045 microM (compare with the rosiglitazone EC(50) of 0.067 microM), while the 13-NO(2) and 9- and 10-NO(2) derivatives were considerably less effective with EC(50) values of 0.41-0.62 microM. We conclude that the regioisomers of NO(2)-LA are not functionally equivalent. The 12-NO(2) derivative appears to be the most potent in PPARgamma-dependent transcription activation, whereas the weaker PPARgamma agonists, 13-NO(2) and 9- and 10-NO(2), may be relatively more important in signaling via other, PPARgamma-independent pathways in which this family of nitrolipid electrophiles is implicated.


Assuntos
Ácidos Linoleicos/farmacologia , Nitrocompostos/farmacologia , PPAR gama/metabolismo , Ligação Competitiva , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Clonais , Relação Dose-Resposta a Droga , Feminino , Genes Reporter , Humanos , Concentração Inibidora 50 , Ácidos Linoleicos/química , Luciferases/metabolismo , Nitrocompostos/química , Ressonância Magnética Nuclear Biomolecular , PPAR gama/agonistas , PPAR gama/genética , Ensaio Radioligante , Rosiglitazona , Estereoisomerismo , Tiazolidinedionas/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transdução Genética
15.
Bioorg Med Chem Lett ; 19(19): 5716-21, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19700315

RESUMO

Distinct from previously reported urea and amide inhibitors of soluble epoxide hydrolase (sEH), a novel class of inhibitors were rationally designed based on the X-ray structure of this enzyme and known amide inhibitors. The structure-activity relationship (SAR) study was focused on improving the sEH inhibitory activity. Aminobenzisoxazoles emerged to be the optimal series, of which a potent human sEH inhibitor 7t was identified with a good pharmacokinetics (PK) profile. The strategy of employing aminoheterocycles as amide replacements may represent a general approach to develop mimics of known hydrolase or protease inhibitors containing an amide moiety.


Assuntos
Amidas/química , Compostos de Anilina/química , Inibidores Enzimáticos/química , Epóxido Hidrolases/antagonistas & inibidores , Compostos Heterocíclicos com 2 Anéis/química , Isoxazóis/química , Compostos de Anilina/síntese química , Compostos de Anilina/farmacocinética , Animais , Sítios de Ligação , Simulação por Computador , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Epóxido Hidrolases/metabolismo , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Humanos , Isoxazóis/síntese química , Isoxazóis/farmacocinética , Ligação Proteica , Ratos , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 19(13): 3398-404, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19481932

RESUMO

Spirocyclic secondary amine-derived trisubstituted ureas were identified as highly potent, bioavailable and selective soluble epoxide hydrolase (sEH) inhibitors. Despite good oral exposure and excellent ex vivo target engagement in blood, one such compound, rac-1a, failed to lower blood pressure acutely in spontaneously hypertensive rats (SHRs). This study posed the question as to whether sEH inhibition provides a robust mechanism leading to a significant antihypertensive effect.


Assuntos
Aminas/química , Anti-Hipertensivos/síntese química , Inibidores Enzimáticos/síntese química , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Espiro/química , Ureia/análogos & derivados , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Linhagem Celular , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Epóxido Hidrolases/metabolismo , Humanos , Ratos , Ratos Endogâmicos SHR , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/farmacocinética
17.
Bioorg Med Chem Lett ; 19(18): 5314-20, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19682899

RESUMO

3,3-Disubstituted piperidine-derived trisubstituted urea entA-2b was discovered as a highly potent and selective soluble epoxide hydrolase (sEH) inhibitor. Despite the good compound oral exposure, excellent sEH inhibition in whole blood, and remarkable selectivity, compound entA-2b failed to lower blood pressure acutely in spontaneously hypertensive rats (SHRs). This observation further challenges the premise that sEH inhibition can provide a viable approach to the treatment of hypertensive patients.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Hipertensão/tratamento farmacológico , Piperidinas/química , Ureia/análogos & derivados , Ureia/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/sangue , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Ratos , Ratos Endogâmicos SHR , Relação Estrutura-Atividade , Ureia/uso terapêutico
18.
Mol Pharmacol ; 73(1): 62-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940191

RESUMO

Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)gamma agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARgammaMs interact with PPARgamma differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPARgamma ligand, SPPARgammaM2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPARgammaM2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPARgammaM2 was found to bind to and activate human PPARgamma in which the Tyr473 residue had been mutated to alanine (hPPARgammaY473A), with potencies similar to those observed with the wild-type receptor (hPPARgammaWT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPARgammaMs were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPARgamma full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPARgammaMs with the PPARgamma LBD, thereby providing a precise molecular determinant for their differing pharmacologies.


Assuntos
PPAR gama/metabolismo , Tirosina/metabolismo , Humanos , Ligantes
19.
Mol Pharmacol ; 74(2): 403-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18467542

RESUMO

Adipose tissue is a metabolically responsive endocrine organ that secretes a myriad of adipokines. Antidiabetic drugs such as peroxisome proliferator-activated receptor (PPAR) gamma agonists target adipose tissue gene expression and correct hyperglycemia via whole-body insulin sensitization. The mechanism by which altered gene expression in adipose tissue affects liver and muscle insulin sensitivity (and thus glucose homeostasis) is not fully understood. One possible mechanism involves the alteration in adipokine secretion, in particular the up-regulation of secreted factors that increase whole-body insulin sensitivity. Here, we report the use of transcriptional profiling to identify genes encoding for secreted proteins the expression of which is regulated by PPARgamma agonists. Of the 379 genes robustly regulated by two structurally distinct PPARgamma agonists in the epididymal white adipose tissue (EWAT) of db/db mice, 33 encoded for known secreted proteins, one of which was FGF21. Although FGF21 was recently reported to be up-regulated in cultured adipocytes by PPARgamma agonists and in liver by PPARalpha agonists and induction of ketotic states, we demonstrate that the protein is transcriptionally up-regulated in adipose tissue in vivo by PPARgamma agonist treatment and under a variety of physiological conditions, including fasting and high fat diet feeding. In addition, we found that circulating levels of FGF21 protein were increased upon treatment with PPARgamma agonists and under ketogenic states. These results suggest a role for FGF21 in mediating the antidiabetic activities of PPARgamma agonists.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , PPAR gama/fisiologia , Regulação para Cima/fisiologia , Células 3T3-L1 , Tecido Adiposo/fisiologia , Sequência de Aminoácidos , Animais , Fatores de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , PPAR gama/genética , Coelhos , Regulação para Cima/genética
20.
Circ Res ; 98(7): e50-9, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16556873

RESUMO

Activation of the peroxisome proliferator-activated receptor (PPAR) gamma, the molecular target for insulin sensitizing thiazolidinediones used in patients with type 2 diabetes, inhibits vascular smooth muscle cell (VSMC) proliferation and prevents atherosclerosis and neointima formation. Emerging evidence indicates that telomerase controls key cellular functions including replicative lifespan, differentiation, and cell proliferation. In the present study, we demonstrate that ligand-induced and constitutive PPARgamma activation inhibits telomerase activity in VSMCs. Telomerase reverse transcriptase (TERT) confers the catalytic activity of telomerase, and PPARgamma ligands inhibit TERT expression through a receptor-dependent suppression of the TERT promoter. 5'-deletion analysis, site-directed mutagenesis, and transactivation studies using overexpression of Ets-1 revealed that suppression of TERT transcription by PPARgamma is mediated through negative cross-talk with Ets-1-dependent transactivation of the TERT promoter. Chromatin immunoprecipitation assays further demonstrated that PPARgamma ligands inhibit Ets-1 binding to the TERT promoter, which is mediated at least in part through an inhibition of Ets-1 expression by PPARgamma ligands. In VSMCs overexpressing TERT, the efficacy of PPARgamma ligands to inhibit cell proliferation is lost, indicating that TERT constitutes an important molecular target for the antiproliferative effects of PPARgamma ligands. Finally, we demonstrate that telomerase activation during the proliferative response after vascular injury is effectively inhibited by PPARgamma ligands. These findings provide a previously unrecognized mechanism for the antiproliferative effects of PPARgamma ligands and support the concept that PPARgamma ligands may constitute a novel therapeutic approach for the treatment of proliferative cardiovascular diseases.


Assuntos
Músculo Liso Vascular/fisiologia , PPAR gama/fisiologia , Telomerase/antagonistas & inibidores , Animais , Aorta , Sequência de Bases , Doenças Cardiovasculares/terapia , Divisão Celular/fisiologia , Células Cultivadas , Primers do DNA , Ativação Enzimática , Microscopia Confocal , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Mutagênese Sítio-Dirigida , PPAR gama/genética , Ratos , Proteínas Recombinantes/metabolismo , Telomerase/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA