Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 15(11): 3077-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23682956

RESUMO

Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio increases. Methanotrophs synthesize a chalkophore, methanobactin, for the binding and import of copper. Previous work suggested that methanobactin was formed from a polypeptide precursor. Here we report that deletion of the gene suspected to encode for this precursor, mbnA, in Methylosinus trichosporium OB3b, abolishes methanobactin production. Further, gene expression assays indicate that methanobactin, together with another polypeptide of previously unknown function, MmoD, play key roles in regulating expression of MMOs. Based on these data, we propose a general model explaining how expression of the MMO operons is regulated by copper, methanobactin and MmoD. The basis of the 'copper-switch' is MmoD, and methanobactin amplifies the magnitude of the switch. Bioinformatic analysis of bacterial genomes indicates that the production of methanobactin-like compounds is not confined to methanotrophs, suggesting that its use as a metal-binding agent and/or role in gene regulation may be widespread in nature.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/genética , Oligopeptídeos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Transporte Biológico , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/biossíntese , Óperon , Oxirredução , Oxigenases/biossíntese
2.
Appl Environ Microbiol ; 79(19): 5918-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872554

RESUMO

Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when added as HgCl2 and, in doing so, reduced toxicity associated with Hg(II) for both Alphaproteobacteria methanotrophs, including M. trichosporium OB3b, M. trichosporium OB3b ΔmbnA (a mutant defective in methanobactin production), and Methylocystis sp. strain SB2, and a Gammaproteobacteria methanotroph, Methylomicrobium album BG8. Mercury binding by methanobactin was evident in both the presence and absence of copper, despite the fact that methanobactin had a much higher affinity for copper due to the rapid and irreversible binding of mercury by methanobactin. The formation of a gray precipitate suggested that Hg(II), after being bound by methanobactin, was reduced to Hg(0) but was not volatilized. Rather, mercury remained associated with methanobactin and was also found associated with methanotrophic biomass. It thus appears that although the mercury-methanobactin complex was cell associated, mercury was not removed from methanobactin. The amount of biomass-associated mercury in the presence of methanobactin from M. trichosporium OB3b was greatest for M. trichosporium wild-type strain OB3b and the ΔmbnA mutant and least for M. album BG8, suggesting that methanotrophs may have selective methanobactin uptake systems that may be based on TonB-dependent transporters but that such uptake systems exhibit a degree of infidelity.


Assuntos
Imidazóis/metabolismo , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Methylosinus trichosporium/efeitos dos fármacos , Methylosinus trichosporium/metabolismo , Oligopeptídeos/metabolismo , Alphaproteobacteria/efeitos dos fármacos , Inativação Metabólica , Methylococcaceae/efeitos dos fármacos , Methylocystaceae/efeitos dos fármacos , Oxirredução
3.
J Inorg Biochem ; 141: 161-169, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265378

RESUMO

Methanobactin (mb) is a post-translationally modified copper-binding compound, or chalkophore, secreted by many methane-oxidizing bacteria or methanotrophs in response to copper limitation. In addition to copper, methanobactin from Methylosinus trichosporium OB3b (mb-OB3b) has been shown to bind a variety of metals including Hg(2+). In this report, Hg binding by the structurally unique methanobactin from Methylocystis strain SB2 (mb-SB2) was examined and compared to mb-OB3b. Mb-SB2 is shown to bind the common forms of Hg found in aqueous environments, Hg(2+), Hg(CN)2 and CH3Hg(+). The spectral and thermodynamic properties of binding for each form of mercury differed. UV-visible absorption spectra suggested that Hg(2+) binds to both the oxazolone and imidazolone rings of mb-SB2, whereas CH3Hg(+) appeared to only bind to the oxazolone ring. Hg(CN)2 showed spectral properties between Hg(2+) and CH3Hg(+). Isothermal titration calorimetry (ITC) showed both Hg(CN)2 and CH3Hg(+) fit into two-site binding models. For Hg(CN)2 the first site was exothermic and the second endothermic. Both binding sites in CH3Hg(+) were exothermic, but at equilibrium the reaction never moved back to the baseline, suggesting a slow residual reaction. ITC results for Hg(2+) were more complex and suggested a 3- or 4-site model. The spectral, kinetic and thermodynamic changes following Hg binding by mb-SB2 also differed from the changes associated with mb-OB3b. Like mb-OB3b, copper did not displace Hg bound to mb-SB2. In contrast to mb-OB3b Hg(2+) could displace Cu from Cu-containing mb-SB2 and preferentially bound Hg(2+) over Cu(2+) at metal to mb-SB2 molar ratios above 1.0.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Imidazóis/química , Mercúrio/química , Methylocystaceae/química , Oligopeptídeos/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cátions Bivalentes , Cobre/metabolismo , Expressão Gênica , Imidazóis/isolamento & purificação , Imidazóis/metabolismo , Cinética , Mercúrio/metabolismo , Methylocystaceae/crescimento & desenvolvimento , Methylocystaceae/metabolismo , Methylosinus trichosporium/química , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA