Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

2.
J Am Chem Soc ; 146(20): 13770-13782, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717849

RESUMO

The main obstacle for the electrocatalytic production of "green hydrogen" is finding suitable electrocatalysts which operate highly efficiently over extended periods of time. The topic of this study is the oxygen evolution reaction (OER), one of the half-reactions of water splitting. It is complex and has intricate kinetics, which impairs the reaction efficiency. Transition metal oxides have shown potential as electrocatalysts for this reaction, but much remains unknown about the atomic scale processes. We have investigated structure-composition-reactivity correlations for Co3O4, CoFe2O4, and Fe3O4 epitaxial thin-film electrocatalysts exposing either the (001) or (111) surface facets. We found that for Co3O4, the (001) facet is more reactive, while for the other oxides, the (111) facet is more active. A Tafel-like evaluation reveals systematically smaller "Tafel" slopes for the (001) facets. Furthermore, the slopes are smaller for the iron-containing films. Additionally, we found that the oxyhydroxide skin layer which forms under OER reaction conditions is thicker on the cobalt oxides than on the other oxides, which we attribute to either a different density of surface defects or to iron hindering the growth of the skin layers. All studied skin layers were thinner than 1 nm.

3.
J Am Chem Soc ; 146(14): 9665-9678, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557016

RESUMO

The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.

4.
J Am Chem Soc ; 145(7): 4065-4080, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36762901

RESUMO

Bimetallic transition-metal oxides, such as spinel-like CoxFe3-xO4 materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoxFe3-xO4 catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoxFe3-xO4 samples, we elucidate the active species and OER mechanism.

5.
J Am Chem Soc ; 145(39): 21465-21474, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726200

RESUMO

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

6.
J Am Chem Soc ; 144(27): 12007-12019, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767719

RESUMO

Spinel-type catalysts are promising anode materials for the alkaline oxygen evolution reaction (OER), exhibiting low overpotentials and providing long-term stability. In this study, we compared two structurally equal Co2FeO4 spinels with nominally identical stoichiometry and substantially different OER activities. In particular, one of the samples, characterized by a metastable precatalyst state, was found to quickly achieve its steady-state optimum operation, while the other, which was initially closer to the ideal crystallographic spinel structure, never reached such a state and required 168 mV higher potential to achieve 1 mA/cm2. In addition, the enhanced OER activity was accompanied by a larger resistance to corrosion. More specifically, using various ex situ, quasi in situ, and operando methods, we could identify a correlation between the catalytic activity and compositional inhomogeneities resulting in an X-ray amorphous Co2+-rich minority phase linking the crystalline spinel domains in the as-prepared state. Operando X-ray absorption spectroscopy revealed that these Co2+-rich domains transform during OER to structurally different Co3+-rich domains. These domains appear to be crucial for enhancing OER kinetics while exhibiting distinctly different redox properties. Our work emphasizes the necessity of the operando methodology to gain fundamental insight into the activity-determining properties of OER catalysts and presents a promising catalyst concept in which a stable, crystalline structure hosts the disordered and active catalyst phase.

8.
Angew Chem Int Ed Engl ; 60(13): 7426-7435, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33497532

RESUMO

Direct conversion of carbon dioxide into multicarbon liquid fuels by the CO2 electrochemical reduction reaction (CO2 RR) can contribute to the decarbonization of the global economy. Here, well-defined Cu2 O nanocubes (NCs, 35 nm) uniformly covered with Ag nanoparticles (5 nm) were synthesized. When compared to bare Cu2 O NCs, the catalyst with 5 at % Ag on Cu2 O NCs displayed a two-fold increase in the Faradaic efficiency for C2+ liquid products (30 % at -1.0 VRHE ), including ethanol, 1-propanol, and acetaldehyde, while formate and hydrogen were suppressed. Operando X-ray absorption spectroscopy revealed the partial reduction of Cu2 O during CO2 RR, accompanied by a reaction-driven redispersion of Ag on the CuOx  NCs. Data from operando surface-enhanced Raman spectroscopy further uncovered significant variations in the CO binding to Cu, which were assigned to Ag-Cu sites formed during CO2 RR that appear crucial for the C-C coupling and the enhanced yield of liquid products.

9.
Phys Chem Chem Phys ; 22(39): 22260-22270, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33001131

RESUMO

Identifying the structural response of nanoparticle-support ensembles to the reaction conditions is essential to determine their structure in the catalytically active state as well as to unravel the possible degradation pathways. In this work, we investigate the (electronic) structure of carbon- and oxide-supported Pt nanoparticles during electrochemical oxidation by in situ X-ray diffraction, absorption spectroscopy as well as the Pt dissolution rate by in situ mass spectrometry. We prepared ellipsoidal Pt nanoparticles by impregnation of the carbon and titanium-based oxide support as well as spherical Pt nanoparticles on an indium-based oxide support by a surfactant-assisted synthesis route. During electrochemical oxidation, we show that the oxide-supported Pt nanoparticles resist (bulk) oxide formation and Pt dissolution. The lattice of smaller Pt nanoparticles exhibits a size-induced lattice contraction in the as-prepared state with respect to bulk Pt but it expands reversibly during electrochemical oxidation. This expansion is suppressed for the Pt nanoparticles with a bulk-like relaxed lattice. We could correlate the formation of d-band vacancies in the metallic Pt with Pt lattice expansion. PtOx formation is strongest for platelet-like nanoparticles and we explain this with a higher fraction of exposed Pt(100) facets. Of all investigated nanoparticle-support ensembles, the structural response of RuO2/TiO2-supported Pt nanoparticles is the most promising with respect to their morphological and structural integrity under electrochemical reaction conditions.

10.
J Nanosci Nanotechnol ; 19(8): 4590-4598, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913753

RESUMO

A series of Pt/Ni-SiO2/C catalysts with different mass proportions of Ni-SiO2/C (0:100, 30:70, 50:50, 70:30 and 100:0) were prepared and studied towards ethanol electrochemical oxidation in acid medium. The support silica particles were initially synthesized via sol-gel and then modified with NiCl2. The Ni deposited on the silica surface plays a role promoting nucleation sites for the reduction of platinum. Pt was further chemically reduced onto Ni-SiO2 using formic acid and loaded onto carbon Vulcan XC-72 R. The Pt/Ni-SiO2/C catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, temperature-programmed reduction, X-ray photoelectron spectroscopy, transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The physical characterizations reveal the formation of oxide-metal composite and strong interaction between Pt and the Ni-SiO2 composite. The Pt/Ni-SiO2/C catalyst with meso/macroporous structure exhibits higher electrocatalytic activity towards ethanol oxidation and better stability, after 48 h of electrolysis, than a commercial Pt/C catalyst. These improved features could be due to presence of Ni-SiO2 composite that promotes corrosion resistance of the support and prevents the aggregation of Pt nanoparticles and their detachment from the support. The low poisoning of the Pt/Ni-SiO2/C catalyst is probably due to the enhanced oxygen content on the composite surface. The high electrocatalytic activity and enhanced electrochemical stability of the Pt/Ni-SiO2/C catalyst make it promising for further fuel cell applications.

12.
J Am Chem Soc ; 138(38): 12552-63, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27549910

RESUMO

Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

13.
J Am Chem Soc ; 137(40): 13031-40, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26355767

RESUMO

Mixed bimetallic oxides offer great opportunities for a systematic tuning of electrocatalytic activity and stability. Here, we demonstrate the power of this strategy using well-defined thermally prepared Ir-Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC). Variation of the Ir to Ni ratio resulted in a volcano type OER activity curve with an unprecedented 20-fold improvement in Ir mass-based activity over pure Ir oxide. In situ spectroscopic probing of metal dissolution indicated that, against common views, activity and stability are not directly anticorrelated. To uncover activity and stability controlling parameters, the Ir-Ni mixed thin oxide film catalysts were characterized by a wide array of spectroscopic, microscopic, scattering, and electrochemical techniques in conjunction with DFT theoretical computations. By means of an intuitive model for the formation of the catalytically active state of the bimetallic Ir-Ni oxide surface, we identify the coverage of reactive surface hydroxyl groups as a suitable descriptor for the OER activity and relate it to controllable synthetic parameters. Overall, our study highlights a novel, highly active oxygen evolution catalyst; moreover, it provides novel important insights into the structure and performance of bimetallic oxide OER electrocatalysts in corrosive acidic environments.

14.
J Am Chem Soc ; 136(50): 17530-6, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25469760

RESUMO

Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

15.
Nat Commun ; 15(1): 3986, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734726

RESUMO

Pulsed CO2 electroreduction (CO2RR) has recently emerged as a facile way to in situ tune the product selectivity, in particular toward ethanol, without re-designing the catalytic system. However, in-depth mechanistic understanding requires comprehensive operando time-resolved studies to identify the kinetics and dynamics of the electrocatalytic interface. Here, we track the adsorbates and the catalyst state of pre-reduced Cu2O nanocubes ( ~ 30 nm) during pulsed CO2RR using sub-second time-resolved operando Raman spectroscopy. By screening a variety of product-steering pulse length conditions, we unravel the critical role of co-adsorbed OH and CO on the Cu surface next to the oxidative formation of Cu-Oad or CuOx/(OH)y species, impacting the kinetics of CO adsorption and boosting the ethanol selectivity. However, a too low OHad coverage following the formation of bulk-like Cu2O induces a significant increase in the C1 selectivity, while a too high OHad coverage poisons the surface for C-C coupling. Thus, we unveil the importance of co-adsorbed OH on the alcohol formation under CO2RR conditions and thereby, pave the way for improved catalyst design and operating conditions.

16.
EES Catal ; 2(1): 311-323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222061

RESUMO

Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.

17.
Energy Environ Sci ; 17(5): 2046-2058, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449571

RESUMO

The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.

18.
Nat Commun ; 14(1): 4791, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553328

RESUMO

Water electrolysis to produce 'green H2' with renewable energy is a promising option for the upcoming green economy. However, the slow and complex oxygen evolution reaction at the anode limits the efficiency. Co3O4 with added iron is a capable catalyst for this reaction, but the role of iron is presently unclear. To investigate this topic, we compare epitaxial Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film model electrocatalysts, combining quasi in-situ preparation and characterization in ultra-high vacuum with electrochemistry experiments. The well-defined composition and structure of the thin epitaxial films permits the obtention of quantitatively comparable results. CoFe2O4(111) is found to be up to about four times more active than Co3O4(111) and about nine times more than Fe3O4(111), with the activity depending acutely on the Co/Fe concentration ratio. Under reaction conditions, all three oxides are covered by oxyhydroxide. For CoFe2O4(111), the oxyhydroxide's Fe/Co concentration ratio is stabilized by partial iron dissolution.

19.
ACS Appl Mater Interfaces ; 14(2): 2691-2702, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985252

RESUMO

The use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO2 reduction reaction (CO2RR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuOx nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO2 electrolyzer and obtain peak CH4 partial current densities of -143 mA cm-2 (mass activity of 7.2 kA/g) with a Faradaic efficiency (FE) of 48% and multicarbon partial current densities of -231 mA cm-2 at 76% FE (FEC2H4 = 56%). Using atomic force microscopy, electron microscopy, and quasi in situ X-ray photoelectron spectroscopy, we trace back the divergence in hydrocarbon selectivity to differences in NP film morphology and rule out the influence of both the NP size (3-15 nm, >20 µg cm-2) and in situ oxidation state. We show that the combination of the O2 flow rate to the aggregation zone during NP growth and deposition time, which affect the NP production rate and mass loading, respectively, gives rise to the formation of either densely packed CuOx NPs or rough three-dimensional networks made from CuOx NP building blocks, which in turn affects the governing CO2RR mechanism. This study highlights the potential held by SGAS-generated NP films for future CO2RR catalyst layer optimization and upscaling, where the NPs' tunable properties, homogeneity, and the complete absence of organic capping agents may prove invaluable.

20.
ACS Catal ; 11(13): 7694-7701, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34239771

RESUMO

Electrochemical reduction of carbon dioxide (CO2RR) is an attractive route to close the carbon cycle and potentially turn CO2 into valuable chemicals and fuels. However, the highly selective generation of multicarbon products remains a challenge, suffering from poor mechanistic understanding. Herein, we used operando Raman spectroscopy to track the potential-dependent reduction of Cu2O nanocubes and the surface coverage of reaction intermediates. In particular, we discovered that the potential-dependent intensity ratio of the Cu-CO stretching band to the CO rotation band follows a volcano trend similar to the CO2RR Faradaic efficiency for multicarbon products. By combining operando spectroscopic insights with Density Functional Theory, we proved that this ratio is determined by the CO coverage and that a direct correlation exists between the potential-dependent CO coverage, the preferred C-C coupling configuration, and the selectivity to C2+ products. Thus, operando Raman spectroscopy can serve as an effective method to quantify the coverage of surface intermediates during an electrocatalytic reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA