Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397207

RESUMO

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Assuntos
Cardiomiopatia Hipertrófica , Cílios , Adulto , Animais , Cardiomiopatia Hipertrófica/metabolismo , Criança , Cílios/genética , Cílios/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim , Fígado , Mutação/genética , Peixe-Zebra/genética
2.
Gastroenterology ; 166(5): 902-914, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101549

RESUMO

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Assuntos
Hospitalização , Hepatopatias , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio , Cistos/genética , Cistos/diagnóstico por imagem , Cistos/patologia , Progressão da Doença , Europa (Continente) , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Glucosidases/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagem , Hospitalização/estatística & dados numéricos , Fígado/patologia , Fígado/diagnóstico por imagem , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/diagnóstico por imagem , Chaperonas Moleculares , Tamanho do Órgão , Prognóstico , Medição de Risco , Fatores de Risco , Proteínas de Ligação a RNA , Índice de Gravidade de Doença , Fatores Sexuais , Estados Unidos/epidemiologia
3.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154558

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo
4.
Hum Mol Genet ; 31(14): 2295-2306, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137054

RESUMO

Mutations in genes that lead to dysfunctional cilia can cause a broad spectrum of human disease phenotypes referred to as ciliopathies. Many ciliopathy-associated proteins are localized to the evolutionary conserved ciliary transition zone (TZ) subdomain. We identified biallelic missense and nonsense mutations in the gene encoding the transmembrane protein TMEM218 in unrelated patients with features related to Bardet-Biedl, Joubert and Meckel-Gruber syndrome (MKS) and characterized TMEM218 as a major component of the ciliary TZ module. Co-immunoprecipitation assays resulted in the physical interaction of TMEM218 with the MKS module member TMEM67/Meckelin that was significantly reduced by the TMEM218 missense change harboured by one of our patients. We could further validate its pathogenicity by functional in vivo analysis in zebrafish (Danio rerio) as a well-established vertebrate model for ciliopathies. Notably, ciliopathy-related phenotypes were most prominent by genetic interactions with the NPHP module component Nphp4. Conclusively, we describe TMEM218 as a new disease gene for patients with a wide spectrum of syndromic ciliopathy phenotypes and provide evidence for a synergistic interaction of TMEM218 and the NPHP module crucial for proper ciliary function.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Doenças Renais Policísticas , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Caenorhabditis elegans/genética , Cílios/genética , Cílios/metabolismo , Transtornos da Motilidade Ciliar , Ciliopatias/genética , Ciliopatias/metabolismo , Encefalocele , Humanos , Mutação , Doenças Renais Policísticas/genética , Retinose Pigmentar , Peixe-Zebra/genética
5.
Kidney Blood Press Res ; 49(1): 239-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38513628

RESUMO

INTRODUCTION: This study was designed to determine the mineral composition of calculi in nephrocalcinosis with nephrolithiasis, diagnose the underlying disease, and monitor the course of renal function in patients with nephrocalcinosis-nephrolithiasis. METHODS: Renal calculi extruded in a series of 8 patients with nephrocalcinosis were analysed using Fourier transmission infrared spectrometry. In 4 patients, next-generation sequencing using a nephrocalcinosis-nephrolithiasis panel was performed to determine the nature of the underlying disease. In addition, longitudinal analysis of renal function was performed in all patients. RESULTS: Seven patients revealed carbonate apatite as the sole constituent of renal calculi. One patient showed a mixed composition of dicalcium phosphate dihydrate/carbonate apatite at first analysis yet in subsequent episodes also had calculi composed of pure carbonate apatite. Further molecular analysis displayed distal renal tubular acidosis in 2 of 4 patients who consented to sequencing. No known genetic defect could be found in the other two cases. In line with prior reports, decline of renal function was dependent on underlying disease. Distal renal tubular acidosis revealed a progressive course of renal failure, whereas other causes showed stable renal function in long term analysis. CONCLUSION: Nephrocalcinosis with nephrolithiasis is a rare condition with heterogeneous aetiology. Yet mineral composition of renal calculi predominantly consisted of pure carbonate apatite. This uniform finding is similar to subcutaneous calcifications of various origins and might propose a general principle of tissue calcification. Progressive decline of renal function was found in distal renal tubular acidosis, whereas other conditions remained stable over time.


Assuntos
Apatitas , Nefrocalcinose , Nefrolitíase , Humanos , Apatitas/análise , Nefrocalcinose/etiologia , Masculino , Nefrolitíase/etiologia , Feminino , Adulto , Pessoa de Meia-Idade , Acidose Tubular Renal
6.
Cell Mol Life Sci ; 80(11): 333, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878054

RESUMO

The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.


Assuntos
Polaridade Celular , Junções Íntimas , Bioensaio , Regulação para Baixo , Histona Desacetilases/genética
7.
Klin Padiatr ; 236(5): 269-279, 2024 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-38458231

RESUMO

Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.


Assuntos
Síndrome de Bardet-Biedl , Hiperfagia , Síndrome de Bardet-Biedl/terapia , Síndrome de Bardet-Biedl/diagnóstico , Humanos , Hiperfagia/terapia , Hiperfagia/diagnóstico , Hiperfagia/etiologia , Criança , Adolescente , Receptor Tipo 4 de Melanocortina/genética , Terapia Combinada , Colaboração Intersetorial , Comunicação Interdisciplinar , Obesidade Mórbida/complicações
8.
Int J Mol Sci ; 25(2)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279270

RESUMO

The BiP co-chaperone DNAJC3 protects cells during ER stress. In mice, the deficiency of DNAJC3 leads to beta-cell apoptosis and the gradual onset of hyperglycemia. In humans, biallelic DNAJC3 variants cause a multisystem disease, including early-onset diabetes mellitus. Recently, hyperinsulinemic hypoglycemia (HH) has been recognized as part of this syndrome. This report presents a case study of an individual with HH caused by DNAJC3 variants and provides an overview of the metabolic phenotype of individuals with HH and DNAJC3 variants. The study demonstrates that HH may be a primary symptom of DNAJC3 deficiency and can persist until adolescence. Additionally, glycemia and insulin release were analyzed in young DNACJ3 knockout (K.O.) mice, which are equivalent to human infants. In the youngest experimentally accessible age group of 4-week-old mice, the in vivo glycemic phenotype was already dominated by a reduced total insulin secretion capacity. However, on a cellular level, the degree of insulin release of DNAJC3 K.O. islets was higher during periods of increased synthetic activity (high-glucose stimulation). We propose that calcium leakage from the ER into the cytosol, due to disrupted DNAJC3-controlled gating of the Sec61 channel, is the most likely mechanism for HH. This is the first genetic mechanism explaining HH solely by the disruption of intracellular calcium homeostasis. Clinicians should screen for HH in DNAJC3 deficiency and consider DNAJC3 variants in the differential diagnosis of congenital hyperinsulinism.


Assuntos
Hiperinsulinismo Congênito , Proteínas de Choque Térmico HSP40 , Adolescente , Animais , Humanos , Camundongos , Cálcio/metabolismo , Hiperinsulinismo Congênito/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Insulina/metabolismo , Secreção de Insulina , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
9.
Liver Int ; 43(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478640

RESUMO

BACKGROUND AND AIMS: Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS: Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS: In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS: Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.


Assuntos
Cistos , Hepatopatias , Canais de Translocação SEC , Feminino , Humanos , Linhagem Celular , Cistos/genética , Hepatopatias/genética , Canais de Translocação SEC/genética
10.
J Am Soc Nephrol ; 33(2): 305-325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34607911

RESUMO

BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.


Assuntos
DNA Mitocondrial/genética , Síndrome de Gitelman/genética , Mutação , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Feminino , Genótipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patologia , Células HEK293 , Humanos , Lactente , Rim/metabolismo , Rim/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/genética , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Adulto Jovem
11.
J Biol Chem ; 296: 100590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33774048

RESUMO

Diseases of the glomerular basement membrane (GBM), such as Goodpasture's disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IVα345 is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma. We found a distinctive genetic variant of collagen IVα345 in both a familial GP case and four AS kindreds that provided insights into these mechanisms. The variant is an 8-residue appendage at the C-terminus of the α3 subunit of the α345 hexamer. A knock-in mouse harboring the variant displayed GBM abnormalities and proteinuria. This pathology phenocopied AS, which pinpointed the α345 hexamer as a focal point in GBM function and dysfunction. Crystallography and assembly studies revealed underlying hexamer mechanisms, as described in Boudko et al. and Pedchenko et al. Bioactive sites on the hexamer surface were identified where pathogenic pathways of GP and AS converge and, potentially, that of diabetic nephropathy (DN). We conclude that the hexamer functions include signaling and organizing macromolecular complexes, which enable GBM assembly and function. Therapeutic modulation or replacement of α345 hexamer could therefore be a potential treatment for GBM diseases, and this knock-in mouse model is suitable for developing gene therapies.


Assuntos
Doença Antimembrana Basal Glomerular/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Mutação , Nefrite Hereditária/genética , Animais , Colágeno Tipo IV/química , Camundongos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais
12.
Kidney Int ; 101(4): 733-751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34929254

RESUMO

Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1-GTP, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Podócitos , Actinas/metabolismo , Animais , Polaridade Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Camundongos , Podócitos/metabolismo , Proteína Quinase C
13.
Kidney Int ; 101(5): 1039-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227688

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.


Assuntos
Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Criança , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Proteínas Roundabout
14.
Ann Hum Genet ; 86(3): 145-152, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34888854

RESUMO

Alport syndrome is a genetic disorder affecting the basement membranes of the kidney, ear and eye, and represents a leading cause of monogenic kidney disease. Alport syndrome is genetically heterogeneous with three key genes involved (COL4A3-5) and several transmission patterns, including monogenic X-linked, autosomal recessive/dominant and digenic. We report a consanguineous family where 13 individuals presented variable features of Alport syndrome including kidney failure on two generations and male-to-male transmission, suggesting autosomal dominant inheritance. COL4A3-5 gene panel analysis surprisingly reveals two distinct, confirmed splice-altering variants in COL4A3 (NM_000091.4: c.1150+5G>A and c.4028-3C>T) present in homozygous or compound heterozygous state in individuals with kidney failure. This adds a further mode of transmission for Alport syndrome where, in a consanguineous family, the independent segregation of two variants at the same locus may create a pseudodominant transmission pattern. These findings highlight the importance of a molecular diagnosis in Alport syndrome for genetic risk counselling, given the variable modes of inheritance, but also the pitfalls of assuming identity by descent in consanguineous families.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Insuficiência Renal , Autoantígenos/genética , Colágeno Tipo IV/genética , Humanos , Masculino , Mutação , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Linhagem
15.
Nephrol Dial Transplant ; 37(12): 2496-2504, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-35022790

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEis) have evolved as a first-line therapy for delaying end-stage renal failure (ESRF) in Alport syndrome (AS). The present study tested the hypothesis of a superior nephroprotective potential of an early ACEi intervention, examining a cohort with the COL4A5 missense variant p.(Gly624Asp). METHODS: In this observational cohort study (NCT02378805), 114 individuals with the identical gene variant were explored for age at ESRF and life expectancy in correlation with treatment as endpoints. RESULTS: All 13 untreated hemizygous patients developed ESRF (mean age 48.9 ± 13.7 years), as did 3 very late treated hemizygotes (51.7 ± 4.2 years), with a mean life expectancy of 59.2 ± 9.6 years. All 28 earlier-treated [estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2] hemizygous patients were still alive and still had not reached ESRF. Therapy minimized the annual loss of their GFR, similar to the annual loss in healthy individuals. Of 65 heterozygotes, 4 untreated individuals developed ESRF at an age of 53.3 ± 20.7 years. None of the treated heterozygous females developed ESRF. CONCLUSIONS: For the first time, this study shows that in AS, early therapy in individuals with missense variants might have the potential to delay renal failure for their lifetime and thus to improve life expectancy and quality of life without the need for renal replacement therapy. Some treated patients have reached their retirement age with still-functioning kidneys, whereas their untreated relatives have reached ESRF at the same or a younger age. Thus, in children with glomerular haematuria, early testing for Alport-related gene variants could lead to timely nephroprotective intervention.


Assuntos
Falência Renal Crônica , Nefrite Hereditária , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Colágeno Tipo IV/genética , Heterozigoto , Falência Renal Crônica/genética , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Estudos Prospectivos , Qualidade de Vida
16.
Nephrol Dial Transplant ; 37(2): 239-254, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34264297

RESUMO

The overall diagnostic yield of massively parallel sequencing-based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6-30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing-based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.


Assuntos
Nefrologia , Insuficiência Renal Crônica , Adulto , Criança , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética
17.
Brain ; 144(5): 1422-1434, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33970200

RESUMO

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Assuntos
Oxigenases/genética , Paraplegia Espástica Hereditária/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Linhagem , Ratos , Peixe-Zebra
18.
Pediatr Nephrol ; 37(3): 473-487, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33677691

RESUMO

Significant progress has been made in understanding the genetic basis of autosomal dominant polycystic kidney disease (ADPKD), quantifying disease manifestations in children, exploring very-early onset ADPKD as well as pharmacological delay of disease progression in adults. At least 20% of children with ADPKD have relevant, yet mainly asymptomatic disease manifestations such as hypertension or proteinuria (in line with findings in adults with ADPKD, where hypertension and cardiovascular damage precede decline in kidney function). We propose an algorithm for work-up and management based on current recommendations that integrates the need to screen regularly for hypertension and proteinuria in offspring of affected parents with different options regarding diagnostic testing, which need to be discussed with the family with regard to ethical and practical aspects. Indications and scope of genetic testing are discussed. Pharmacological management includes renin-angiotensin system blockade as first-line therapy for hypertension and proteinuria. The vasopressin receptor antagonist tolvaptan is licensed for delaying disease progression in adults with ADPKD who are likely to experience kidney failure. A clinical trial in children is currently ongoing; however, valid prediction models to identify children likely to suffer kidney failure are lacking. Non-pharmacological interventions in this population also deserve further study.


Assuntos
Hipertensão , Rim Policístico Autossômico Dominante , Insuficiência Renal , Adulto , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Criança , Progressão da Doença , Feminino , Humanos , Hipertensão/tratamento farmacológico , Masculino , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Proteinúria/tratamento farmacológico , Insuficiência Renal/tratamento farmacológico
19.
Pediatr Nephrol ; 37(11): 2657-2665, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35211789

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease is a cystic kidney disease with early onset and clinically characterized by enlarged echogenic kidneys, hypertension, varying degrees of kidney dysfunction, and liver fibrosis. It is most frequently caused by sequence variants in the PKHD1 gene, encoding fibrocystin. In more rare cases, sequence variants in DZIP1L are seen, encoding the basal body protein DAZ interacting protein 1-like protein (DZIP1L). So far, only four different DZIP1L variants have been reported. METHODS: Four children from three consanguineous families presenting with polycystic kidney disease were selected for targeted or untargeted exome sequencing. RESULTS: We identified two different, previously not reported homozygous DZIP1L sequence variants: c.193 T > C; p.(Cys65Arg), and c.216C > G; p.(Cys72Trp). Functional analyses of the c.216C > G; p.(Cys72Trp) variant indicated mislocalization of mutant DZIP1L. CONCLUSIONS: In line with published data, our results suggest a critical role of the N-terminal domain for proper protein function. Although patients with PKHD1-associated autosomal recessive polycystic kidney disease often have liver abnormalities, none of the present four patients showed any clinically relevant liver involvement. Our data demonstrate the power and efficiency of next-generation sequencing-based approaches. While DZIP1L-related polycystic kidney disease certainly represents a rare form of the disease, our results emphasize the importance of including DZIP1L in multigene panels and in the data analysis of whole-exome sequencing for cystic kidney diseases. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Recessivo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Consanguinidade , Testes Genéticos/métodos , Humanos , Mutação , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Sequenciamento do Exoma
20.
J Am Soc Nephrol ; 32(11): 2885-2899, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34607910

RESUMO

BACKGROUND: Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS: We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS: In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS: Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.


Assuntos
Cardiomiopatia Dilatada/genética , Hipercalciúria/genética , Nefropatias/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Erros Inatos do Transporte Tubular Renal/genética , Serina-Treonina Quinases TOR/metabolismo , Cardiomiopatia Dilatada/metabolismo , Feminino , Células HEK293 , Humanos , Hipercalciúria/metabolismo , Nefropatias/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Modelos Moleculares , Natriurese/genética , Nefrocalcinose/metabolismo , Linhagem , Conformação Proteica , Erros Inatos do Transporte Tubular Renal/metabolismo , Convulsões/genética , Convulsões/metabolismo , Transdução de Sinais , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA