RESUMO
The age estimation of blood traces provides important leads for the chronological assessment of criminal events and their reconstruction. To determine bloodstain age, experimental comparative data from a laboratory environment are used. Under these conditions the utilization of anticoagulants such as EDTA helps to suppress the blood clotting mechanism to allow the examination over a longer time period. This unnatural prevention of blood coagulation is highly questionable when estimating bloodstain age, since the blood's physical and chemical properties are altered. For this reason, the authors determined actual influence of EDTA on blood spectra over time in order to formulate a statement as to whether this effect can be measured. Human and porcine blood samples were aged under controlled conditions. The resulting UV/VIS spectra were separated into their individual components using signal separation techniques, allowing the changes in the ratios of the individual hemoglobin derivatives to be observed over time. The results show a significant influence of EDTA on the conversion of oxyhemoglobin to methemoglobin and a minor influence on the conversion of methemoglobin to hemichrome within the relevant time range of 5-100 h. The use of EDTA thus slows down the aging process of blood spots. To illustrate the great influence of EDTA, spectra of untreated pig blood samples were included as comparison data. These show that the difference between EDTA-treated and untreated blood samples is as great as the difference between human blood and pig blood. As a consequence of our findings experimental comparative data for the age estimation of bloodstains should never result from EDTA-treated blood.
Assuntos
Anticoagulantes/farmacologia , Manchas de Sangue , Ácido Edético/farmacologia , Animais , Feminino , Medicina Legal , Hemeproteínas/análise , Humanos , Masculino , Metemoglobina/análise , Oxiemoglobinas/análise , Espectrofotometria Ultravioleta , Suínos , Fatores de TempoRESUMO
The age determination of blood traces provides important hints for the chronological assessment of criminal events and their reconstruction. Current methods are often expensive, involve significant experimental complexity and often fail to perform when being applied to aged blood samples taken from different substrates. In this work an absorption spectroscopy-based blood stain age estimation method is presented, which utilizes 400-640nm absorption spectra in computation. Spectral data from 72 differently aged pig blood stains (2h to three weeks) dried on three different substrate surfaces (cotton, polyester and glass) were acquired and the turnover-time correlations were utilized to develop a straightforward age estimation scheme. More precisely, data processing includes data dimensionality reduction, upon which classic k-nearest neighbor classifiers are employed. This strategy shows good agreement between observed and predicted blood stain age (r>0.9) in cross-validation. The presented estimation strategy utilizes spectral data from dissolved blood samples to bypass spectral artifacts which are well known to interfere with other spectral methods such as reflection spectroscopy. Results indicate that age estimations can be drawn from such absorbance spectroscopic data independent from substrate the blood dried on. Since data in this study was acquired under laboratory conditions, future work has to consider perturbing environmental conditions in order to assess real-life applicability.