Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Sci Food Agric ; 103(13): 6340-6351, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37195064

RESUMO

BACKGROUND: The ultraviolet-B (UV-B) radiation can alter grape metabolism during berry development, but little is known on the effect of postharvest UV-B exposure. In this study, we evaluated the effect of postharvest UV-B exposure on berry primary and secondary metabolites in four grapevine varieties (Aleatico, Moscato bianco, Sangiovese, and Vermentino) in order to evaluate the possibility to increase the grape quality and its nutraceutical properties. RESULTS: The treatment did not significantly affect the berry primary metabolism in terms of organic acids, carbohydrates, and amino acids profile, regardless of the variety. UV-B exposure reduced the total anthocyanin content, particularly the tri-substituted and di-substituted forms in Aleatico and Sangiovese, respectively. An overall negative effect of UV-B irradiation on the flavonols profile of Aleatico, Moscato bianco, and Vermentino berries was found, whereas it enhanced the quercetin, myricetin and kaempferol concentration in Sangiovese. The free fraction of berry volatile organic compounds increased in UV-B-treated Aleatico and Moscato bianco berries, especially C13 -norisoprenoids and volatile phenols, as well as key monoterpenes, such as the linalool derivatives. However, higher concentrations of glycosylated monoterpenes and C13 -norisoprenoids were measured in Sangiovese and Vermentino berries treated with UV-B. CONCLUSION: This study provides new insights on the effect of postharvest UV-B radiation on berry secondary metabolism, highlighting a different modulation between varieties and suggesting the potential use of this technique to increase some nutraceutical and quality characteristics of grape berry. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Vitis , Vitis/química , Frutas/química , Norisoprenoides/metabolismo , Fenóis/química , Monoterpenos/análise
2.
EMBO Rep ; 17(10): 1396-1409, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27562601

RESUMO

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular , Drosophila , Complexo Dinactina/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Interferência de RNA
3.
J Biol Chem ; 290(6): 3223-37, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25527496

RESUMO

Mutations in MECP2 cause a broad spectrum of neuropsychiatric disorders of which Rett syndrome represents the best defined condition. Both neuronal and non-neuronal functions of the methyl-binding protein underlie the related pathologies. Nowadays MeCP2 is recognized as a multifunctional protein that modulates its activity depending on its protein partners and posttranslational modifications. However, we are still missing a comprehensive understanding of all MeCP2 functions and their involvement in the related pathologies. The study of human mutations often offers the possibility of clarifying the functions of a protein. Therefore, we decided to characterize a novel MeCP2 phospho-isoform (Tyr-120) whose relevance was suggested by a Rett syndrome patient carrying a Y120D substitution possibly mimicking a constitutively phosphorylated state. Unexpectedly, we found MeCP2 and its Tyr-120 phospho-isoform enriched at the centrosome both in dividing and postmitotic cells. The molecular and functional connection of MeCP2 to the centrosome was further reinforced through cellular and biochemical approaches. We show that, similar to many centrosomal proteins, MeCP2 deficiency causes aberrant spindle geometry, prolonged mitosis, and defects in microtubule nucleation. Collectively, our data indicate a novel function of MeCP2 that might reconcile previous data regarding the role of MeCP2 in cell growth and cytoskeleton stability and that might be relevant to understand some aspects of MeCP2-related conditions. Furthermore, they link the Tyr-120 residue and its phosphorylation to cell division, prompting future studies on the relevance of Tyr-120 for cortical development.


Assuntos
Centrossomo/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Microtúbulos/metabolismo , Mitose , Mutação de Sentido Incorreto , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Síndrome de Rett/genética
5.
J Agric Food Chem ; 72(15): 8332-8346, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501393

RESUMO

Metabolomics has become an important tool in elucidating the complex relationship between a plant genotype and phenotype. For over 20 years, nuclear magnetic resonance (NMR) spectroscopy has been known for its robustness, quantitative capabilities, simplicity, and cost-efficiency. 1H NMR is the method of choice for analyzing a broad range of relatively abundant metabolites, which can be used for both capturing the plant chemical profile at one point in time and understanding the pathways that underpin plant defense. This systematic Review explores how 1H NMR-based plant metabolomics has contributed to understanding the role of various compounds in plant responses to biotic stress, focusing on both primary and secondary metabolites. It clarifies the challenges and advantages of using 1H NMR in plant metabolomics, interprets common trends observed, and suggests guidelines for method development and establishing standard procedures.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Plantas , Estresse Fisiológico
6.
J Crohns Colitis ; 18(1): 106-120, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37527838

RESUMO

BACKGROUND AND AIMS: Treatment with anti-tumour necrosis factor α antibodies [anti-TNF] changes the dysbiotic faecal bacteriome in Crohn's disease [CD]. However, it is not known whether these changes are due to decreasing mucosal inflammatory activity or whether similar bacteriome reactions might be observed in gut-healthy subjects. Therefore, we explored changes in the faecal bacteriome and metabolome upon anti-TNF administration [and therapeutic response] in children with CD and contrasted those to anti-TNF-treated children with juvenile idiopathic arthritis [JIA]. METHODS: Faecal samples collected longitudinally before and during anti-TNF therapy were analysed with regard to the bacteriome by massively parallel sequencing of the 16S rDNA [V4 region] and the faecal metabolome by 1H nuclear magnetic resonance imaging. The response to treatment by mucosal healing was assessed by the MINI index at 3 months after the treatment started. We also tested several representative gut bacterial strains for in vitro growth inhibition by infliximab. RESULTS: We analysed 530 stool samples from 121 children [CD 54, JIA 18, healthy 49]. Bacterial community composition changed on anti-TNF in CD: three members of the class Clostridia increased on anti-TNF, whereas the class Bacteroidia decreased. Among faecal metabolites, glucose and glycerol increased, whereas isoleucine and uracil decreased. Some of these changes differed by treatment response [mucosal healing] after anti-TNF. No significant changes in the bacteriome or metabolome were noted upon anti-TNF in JIA. Bacterial growth was not affected by infliximab in a disc diffusion test. CONCLUSIONS: Our findings suggest that gut mucosal healing is responsible for the bacteriome and metabolome changes observed in CD, rather than any general effect of anti-TNF.


Assuntos
Doença de Crohn , Criança , Humanos , Doença de Crohn/patologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Bactérias , Metaboloma
7.
Front Nutr ; 10: 1183963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485388

RESUMO

Introduction: Coeliac disease is a lifelong immune-mediated enteropathy manifested as gluten intolerance in individuals carrying specific human leukocyte antigen (HLA) molecules. Other factors than genetics and gluten intake, however, may play a role in triggering the disease. The gut internal environment is thought to be one of these potential contributing factors, and it can be influenced throughout life. Methods: We examine the impact of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 supplementation on the faecal metabolome in genetically predisposed children having tissue transglutaminase autoantibodies, i.e., coeliac disease autoimmunity. Probiotic strains were selected based on their beneficial properties, including mucosal permeability and immune modulation effects. The intervention group (n = 40) and control group (n = 38) took the probiotics or placebo daily for 6 months in a double-blinded randomised trial. Faecal samples were collected at baseline and after 3 and 6 months and analysed using the 1H NMR for metabolome. The incorporation of 16S rRNA sequencing as a supportive dataset complemented the analysis of the metabolome data. Results: During the 6 months of intervention, the stool concentrations of 4-hydroxyphenylacetate increased in the intervention group as compared to controls, whereas concentrations of threonine, valine, leucine, isoleucine, methionine, phenylalanine, aspartate, and fumarate decreased. Additionally, a noteworthy effect on the glycine, serine, and threonine metabolic pathway has been observed. Conclusion: The findings suggest a modest yet significant impact of the probiotics on the faecal metabolome, primarily influencing proteolytic processes in the gut. Clinical trial registration: ClinicalTrials.gov, NCT03176095.

8.
Neural Plast ; 2012: 728267, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22779007

RESUMO

In the last few years, the X-linked serine/threonine kinase cyclin-dependent kinase-like 5 (CDKL5) has been associated with early-onset epileptic encephalopathies characterized by the manifestation of intractable epilepsy within the first weeks of life, severe developmental delay, profound hypotonia, and often the presence of some Rett-syndrome-like features. The association of CDKL5 with neurodevelopmental disorders and its high expression levels in the maturing brain underscore the importance of this kinase for proper brain development. However, our present knowledge of CDKL5 functions is still rather limited. The picture that emerges from the molecular and cellular studies suggests that CDKL5 functions are important for regulating both neuronal morphology through cytoplasmic signaling pathways and activity-dependent gene expression in the nuclear compartment. This paper surveys the current state of CDKL5 research with emphasis on the clinical symptoms associated with mutations in CDKL5, the different mechanisms regulating its functions, and the connected molecular pathways. Finally, based on the available data we speculate that CDKL5 might play a role in neuronal plasticity and we adduce and discuss some possible arguments supporting this hypothesis.


Assuntos
Epilepsia/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Epilepsia/diagnóstico , Epilepsia/metabolismo , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Síndrome de Lennox-Gastaut , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Transdução de Sinais/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/metabolismo
9.
EMBO Rep ; 10(12): 1327-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820693

RESUMO

Mutations in the methyl-CpG-binding protein 2 (MeCP2) are associated with Rett syndrome and other neurological disorders. MeCP2 represses transcription mainly by recruiting various co-repressor complexes. Recently, MeCP2 phosphorylation at Ser 80, Ser 229 and Ser 421 was shown to occur in the brain and modulate MeCP2 silencing activities. However, the kinases directly responsible for this are largely unknown. Here, we identify the homeodomain-interacting protein kinase 2 (HIPK2) as a kinase that binds MeCP2 and phosphorylates it at Ser 80 in vitro and in vivo. HIPK2 modulates cell proliferation and apoptosis, and the neurological defects of Hipk2-null mice indicate its role in proper brain functions. We show that MeCP2 cooperates with HIPK2 in induction of apoptosis and that Ser 80 phosphorylation is required together with the DNA binding of MeCP2. These data are, to our knowledge, the first that describe a kinase associating with MeCP2, causing its specific phosphorylation in vivo and, furthermore, they reinforce the role of MeCP2 in regulating cell growth.


Assuntos
Apoptose/genética , Proteínas de Transporte/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Células Cultivadas , DNA/metabolismo , Embrião de Mamíferos , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Serina/genética , Serina/metabolismo
10.
EMBO Mol Med ; 12(6): e10270, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383329

RESUMO

Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.


Assuntos
Síndrome de Rett , Animais , Encéfalo/metabolismo , Proteínas Hedgehog , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação , Síndrome de Rett/genética
11.
Mol Neurobiol ; 56(7): 4838-4854, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30402709

RESUMO

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain. As most models of Mecp2, the Mecp2Y120D mouse develops a severe Rett-like phenotype. This mutation alters the interaction of the protein with chromatin, but surprisingly, it also impairs its association with corepressors independently on the involved interacting domains. These features, which become overt mainly in the mature brain, cause a more accessible and transcriptionally active chromatin structure; conversely, in the Mecp2-null brain, we find a less accessible and transcriptionally inactive chromatin. By demonstrating that different MECP2 mutations can produce concordant neurological phenotypes but discordant molecular features, we highlight the importance of considering personalized approaches for the treatment of Rett syndrome.


Assuntos
Comportamento Animal , Técnicas de Introdução de Genes , Proteína 2 de Ligação a Metil-CpG/metabolismo , Medicina de Precisão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatina/metabolismo , Feminino , Humanos , Longevidade , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neurônios/metabolismo , Fenótipo , Síndrome de Rett
12.
Sci Rep ; 7(1): 6228, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740074

RESUMO

The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental disorders characterized by the early onset of seizures and intellectual disability. The CDKL5 protein is widely expressed in most tissues and cells with both nuclear and cytoplasmic localization. In post-mitotic neurons CDKL5 is mainly involved in dendritic arborization, axon outgrowth, and spine formation while in proliferating cells its function is still largely unknown. Here, we report that CDKL5 localizes at the centrosome and at the midbody in proliferating cells. Acute inactivation of CDKL5 by RNA interference (RNAi) leads to multipolar spindle formation, cytokinesis failure and centrosome accumulation. At the molecular level, we observed that, among the several midbody components we analyzed, midbodies of CDKL5-depleted cells were devoid of HIPK2 and its cytokinesis target, the extrachromosomal histone H2B phosphorylated at S14. Of relevance, expression of the phosphomimetic mutant H2B-S14D, which is capable of overcoming cytokinesis failure in HIPK2-defective cells, was sufficient to rescue spindle multipolarity in CDKL5-depleted cells. Taken together, these results highlight a hitherto unknown role of CDKL5 in regulating faithful cell division by guaranteeing proper HIPK2/H2B functions at the midbody.


Assuntos
Proteínas de Transporte/metabolismo , Divisão Celular , Centrossomo/metabolismo , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Transporte/genética , Ciclo Celular , Células HeLa , Humanos , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética
13.
Front Cell Neurosci ; 8: 236, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165434

RESUMO

Although Rett syndrome (RTT) represents one of the most frequent forms of severe intellectual disability in females worldwide, we still have an inadequate knowledge of the many roles played by MeCP2 (whose mutations are responsible for most cases of RTT) and their relevance for RTT pathobiology. Several studies support a role of MeCP2 in the regulation of synaptic plasticity and homeostasis. At the molecular level, MeCP2 is described as a repressor capable of inhibiting gene transcription through chromatin compaction. Indeed, it interacts with several chromatin remodeling factors, such as HDAC-containing complexes and ATRX. Other studies have inferred that MeCP2 functions also as an activator; a role in regulating mRNA splicing and in modulating protein synthesis has also been proposed. Further, MeCP2 avidly binds both 5-methyl- and 5-hydroxymethyl-cytosine. Recent evidence suggests that it is the highly disorganized structure of MeCP2, together with its post-translational modifications (PTMs) that generate and regulate this functional versatility. Indeed, several reports have demonstrated that differential phosphorylation of MeCP2 is a key mechanism by which the methyl binding protein modulates its affinity for its partners, gene expression and cellular adaptations to stimuli and neuronal plasticity. As logic consequence, generation of phospho-defective Mecp2 knock-in mice has permitted associating alterations in neuronal morphology, circuit formation, and mouse behavioral phenotypes with specific phosphorylation events. MeCP2 undergoes various other PTMs, including acetylation, ubiquitination and sumoylation, whose functional roles remain largely unexplored. These results, together with the genome-wide distribution of MeCP2 and its capability to substitute histone H1, recall the complex regulation of histones and suggest the relevance of quickly gaining a deeper comprehension of MeCP2 PTMs, the respective writers and readers and the consequent functional outcomes.

14.
Epigenetics ; 2(3): 187-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17965612

RESUMO

MECP2 is an X-linked gene coding for a protein functioning as a transcriptional repressor. The protein MeCP2 (Methyl CpG-binding protein) is an abundant component of pericentric heterochromatin and its mutations or duplications are present in around 80% of patients with a neurological disorder known as Rett Syndrome. Although MeCP2 action depends critically on its binding to chromatin, very little is known about the dynamics of this process. Using fluorescence recovery after photobleaching in controlled conditions concentration, we demonstrated that most GFP-MeCP2 fusion protein associates strongly and reversibly to pericentric heterocromatin whereas the remaining fraction is bound irreversibly. The mobility of the methyl-binding protein is influenced by the differentiation state of the host cells. Furthermore, residues downstream of the methyl-binding domain are critical for the interaction with chromatin. Whereas the binding is stabilised by the central region it is likely modulated by the most C-terminal region. Importantly, these residues are missing in several disease causing mutations. Our data suggest that alterations in the affinity of MeCP2 for chromatin might contribute to the pathological effects of mutations causing Rett Syndrome.


Assuntos
Heterocromatina/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Síndrome de Rett/metabolismo , Animais , Diferenciação Celular/genética , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Heterocromatina/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Células NIH 3T3 , Células PC12 , Fotodegradação , Transporte Proteico/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Síndrome de Rett/genética
15.
Hum Mol Genet ; 14(14): 1935-46, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15917271

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Most patients affected by classic RTT and a smaller percentage of patients with the milder form 'preserved speech variant' have either point mutations or deletions/duplications in the MECP2 gene. Recently, mutations in the CDKL5 gene, coding for a putative kinase, have been found in female patients with a phenotype overlapping with that of RTT. Here, we report two patients with the early seizure variant of RTT, bearing two novel CDKL5 truncating mutations, strengthening the correlation between CDKL5 and RTT. Considering the similar phenotypes caused by mutations in MECP2 and CDKL5, it has been suggested that the two genes play a role in common pathogenic processes. We show here that CDKL5 is a nuclear protein whose expression in the nervous system overlaps with that of MeCP2, during neural maturation and synaptogenesis. Importantly, we demonstrate that MeCP2 and CDKL5 interact both in vivo and in vitro and that CDKL5 is indeed a kinase, which is able to phosphorylate itself and to mediate MeCP2 phosphorylation, suggesting that they belong to the same molecular pathway. Furthermore, this paper contributes to the clarification of the phenotype associated with CDKL5 mutations and indicates that CDKL5 should be analyzed in each patient showing a clinical course similar to RTT but characterized by a lack of an early normal period due to the presence of seizures.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Convulsões/genética , Idade de Início , Sequência de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Primers do DNA , Feminino , Humanos , Imunoprecipitação , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Fosforilação , Mutação Puntual , Proteínas Serina-Treonina Quinases/química , Transcrição Gênica
16.
J Biol Chem ; 279(24): 25623-31, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15056664

RESUMO

MeCP2 is the founder member of a family of methyl-CpG-binding proteins able to repress transcription from methylated DNA. To date, MeCP2 action seems to involve the delivery on modified DNA of histone deacetylase activity, followed by histone methylating activity. It has been recently demonstrated that MECP2 mutations cause Rett syndrome, a childhood neurological disorder that represents one of the most common causes of mental retardation in females. Here we show that a novel Xenopus laevis protein of 20 kDa, p20, is able to interact in vivo and in vitro with MeCP2. The p20 sequence revealed that it belongs to the family of the WAP (whey acidic protein) proteins, often functioning as a protease inhibitor. Therefore, we asked whether the p20 can influence the MeCP2 half-life. We demonstrate that, indeed, the xp20 not only can significantly increase the stability of an exogenously expressed MeCP2 in Xenopus oocytes but also can stabilize the human endogenous MeCP2. The capability of the mammalian methyl-CpG-binding protein to interact with p20 is confirmed by co-immunoprecipitation experiments performed overexpressing the WAP protein. Glutathione S-transferase pull-down assays reveal that the MeCP2 residues localized between the methyl-binding domain and the transcriptional repression domain is the primary interaction surface. Our data suggest that regulation of MeCP2 metabolism might be of relevant importance; in accordance with this, previous results have shown that some Rett syndrome mutations are characterized by a decrease in MeCP2 stability.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/química , Proteínas do Leite/farmacologia , Proteínas Repressoras , Proteínas de Xenopus/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG , Dados de Sequência Molecular , Síndrome de Rett , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA