Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 8(3): e1002529, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412369

RESUMO

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.


Assuntos
Genoma Viral/genética , Estudo de Associação Genômica Ampla , Infecções por HIV/virologia , HIV-1/genética , Evasão da Resposta Imune/imunologia , Linfócitos T CD8-Positivos/imunologia , Variação Genética , Variação Estrutural do Genoma , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Evasão da Resposta Imune/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Viral/análise , Análise de Sequência de RNA , Vacinas Virais/imunologia
3.
J Infect Dis ; 208(1): 17-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23136221

RESUMO

BACKGROUND: Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. METHODS: Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. RESULTS: Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. CONCLUSIONS: These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistance.


Assuntos
Hepacivirus/genética , Antivirais/uso terapêutico , Sequência de Bases , Farmacorresistência Viral/genética , Variação Genética/genética , Genoma Viral/genética , Genótipo , Hepacivirus/classificação , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Dados de Sequência Molecular , Filogenia
4.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562900

RESUMO

Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.

5.
Cell Stem Cell ; 30(9): 1199-1216.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37625411

RESUMO

Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.


Assuntos
Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais , Epitélio , Camundongos Endogâmicos NOD , Camundongos SCID
6.
Gastroenterology ; 140(2): 686-696.e1, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20875418

RESUMO

BACKGROUND & AIMS: HLA class I alleles are linked to spontaneous control of hepatitis C virus (HCV) and human immunodeficiency virus-1, but for HCV the roles of particular alleles and corresponding CD8(+) T-cell responses remain incompletely defined. We aimed to determine the correlations between these alleles and natural outcomes of HCV and determine associated key T-cell responses. METHODS: In a cohort of HCV individuals, we determined HLA class I alleles, HCV outcomes, T-cell responses, and examined sequence data for mutational changes within key epitopes. RESULTS: Carriage of HLA-B 57 was associated with a higher rate of viral clearance (risk ratio = 2.0; 95% confidence interval: 1.2-3.4), while HLA-B 08 was associated with a lower rate (risk ratio = 0.34; 95% confidence interval: 0.1-0.9]. Two HLA-B 57-restricted T-cell epitopes were targeted in spontaneous clearance; subjects with chronic viremia expressing HLA-B 57 harbored HCV strains with a high frequency of mutations in key residues. HLA-B 57-mediated escape was supported by diminished immune recognition of these variants and acute HCV infection revealing viral evolution toward less recognized variants. Analysis of a genotype 1b strain from a single-source HCV outbreak in which HLA-B 57 was not protective revealed sequence variations that interfere with immunogenicity, thereby preventing HLA-B 57-mediated immune pressure. CONCLUSIONS: Our data indicate a role of HLA-B 57-restricted CD8(+) T-cell responses in mediating spontaneous clearance and evolution in HCV infection, and viral strains containing epitope variants that are less recognized abrogate the protective effects of HLA-B 57. The finding that HLA-B 57-mediated antiviral immunity is associated with control of both human immunodeficiency virus-1 and HCV suggests a common shared mechanism of a successful immune response against persistent viruses.


Assuntos
Antígenos HLA-B/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Estudos de Coortes , Epitopos/imunologia , Feminino , Antígenos HLA-B/genética , Hepacivirus/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
7.
J Virol ; 85(22): 11883-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880756

RESUMO

While human leukocyte antigen B57 (HLA-B57) is associated with the spontaneous clearance of hepatitis C virus (HCV), the mechanisms behind this control remain unclear. Immunodominant CD8(+) T cell responses against the B57-restricted epitopes comprised of residues 2629 to 2637 of nonstructural protein 5B (NS5B(2629-2637)) (KSKKTPMGF) and E2(541-549) (NTRPPLGNW) were recently shown to be crucial in the control of HCV infection. Here, we investigated whether the selection of deleterious cytotoxic T lymphocyte (CTL) escape mutations in the NS5B KSKKTPMGF epitope might impair viral replication and contribute to the B57-mediated control of HCV. Common CTL escape mutations in this epitope were identified from a cohort of 374 HCV genotype 1a-infected subjects, and their impact on HCV replication assessed using a transient HCV replicon system. We demonstrate that while escape mutations at residue 2633 (position 5) of the epitope had little or no impact on HCV replication in vitro, mutations at residue 2629 (position 1) substantially impaired replication. Notably, the deleterious mutations at position 2629 were tightly linked in vivo to upstream mutations at residue 2626, which functioned to restore the replicative defects imparted by the deleterious escape mutations. These data suggest that the selection of costly escape mutations within the immunodominant NS5B KSKKTPMGF epitope may contribute in part to the control of HCV replication in B57-positive individuals and that persistence of HCV in B57-positive individuals may involve the development of specific secondary compensatory mutations. These findings are reminiscent of the selection of deleterious CTL escape and compensatory mutations by HLA-B57 in HIV-1 infection and, thus, may suggest a common mechanism by which alleles like HLA-B57 mediate protection against these highly variable pathogens.


Assuntos
Antígenos HLA-B/imunologia , Hepacivirus/imunologia , Mutação de Sentido Incorreto , Supressão Genética , Linfócitos T Citotóxicos/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Linfócitos T Citotóxicos/virologia , Proteínas não Estruturais Virais/genética
8.
J Infect Dis ; 204(4): 609-16, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21791663

RESUMO

BACKGROUND: Hepatitis C virus (HCV) chronically infects >170 million persons worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. The identification of more effective and better-tolerated agents for treating HCV is a high priority. We have reported elsewhere the discovery of the anti-HCV compound ceestatin using a high-throughput screen of a small molecule library. METHODS: To identify host or viral protein targets in an unbiased fashion, we performed affinity chromatography, using tandem liquid chromatography/mass spectrometry to identify specific potential targets. RESULTS. Ceestatin binds to 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase and irreversibly inhibits HMG-CoA synthase in a dose-dependent manner. Ceestatin's anti-HCV effects are reversed by addition of HMG-CoA, mevalonic acid, or geranylgeraniol. Treatment with small interfering RNA against HMG-CoA synthase led to a substantial reduction in HCV replication, further validating HMG-CoA synthase as an enzyme essential for HCV replication. CONCLUSIONS: Ceestatin therefore exerts its anti-HCV effects through inhibition of HMG-CoA synthase. It may prove useful as an antiviral agent, as a probe to study HCV replication, and as a cholesterol-lowering agent. The logical stepwise process employed to discover the mechanism of action of ceestatin can serve as a general experimental strategy to uncover the targets on which novel uncharacterized anti-HCV compounds act.


Assuntos
Antivirais/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hepacivirus/efeitos dos fármacos , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Lactonas/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Cromatografia de Afinidade , Hepacivirus/fisiologia , Humanos , Espectrometria de Massas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno
9.
J Vis Exp ; (184)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35781291

RESUMO

Diseases of the conducting airway such as asthma, cystic fibrosis (CF), primary ciliary dyskinesia (PCD), and viral respiratory infections are major causes of morbidity and mortality worldwide. In vitro platforms using human bronchial epithelial cells (HBECs) have been instrumental to our understanding of the airway epithelium in health and disease. Access to HBECs from individuals with rare genetic diseases or rare mutations is a bottleneck in lung research. Induced pluripotent stem cells (iPSCs) are readily generated by "reprogramming" somatic cells and retain the unique genetic background of the individual donor. Recent advances allow for the directed differentiation of iPSCs to lung epithelial progenitor cells, alveolar type 2 cells, as well as the cells of the conducting airway epithelium via basal cells, the major airway stem cells. Here we outline a protocol for the maintenance and expansion of iPSC-derived airway basal cells (hereafter iBCs) as well as their trilineage differentiation in air-liquid interface (ALI) cultures. iBCs are maintained and expanded as epithelial spheres suspended in droplets of extracellular matrix cultured in a primary basal cell medium supplemented with inhibitors of TGF-ß and BMP signaling pathways. iBCs within these epithelial spheres express key basal markers TP63 and NGFR, can be purified by fluorescence activated cell sorting (FACS), and when plated on porous membranes in standard ALI culture conditions, differentiate into a functional airway epithelium. ALI cultures derived from healthy donors are composed of basal, secretory and multiciliated cells and demonstrate epithelial barrier integrity, motile cilia, and mucus secretion. Cultures derived from individuals with CF or PCD recapitulate the dysfunctional CFTR-mediated chloride transport or immotile cilia, the respective disease-causing epithelial defects. Here, we present a protocol for the generation of human cells that can be applied for modeling and understanding airway diseases.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes , Diferenciação Celular , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais , Humanos , Pulmão/metabolismo
10.
Nat Commun ; 13(1): 4270, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906215

RESUMO

Cystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of CFTR using established animal and cell-based models led to the recent discovery of effective modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we generate a panel of airway epithelial cells using induced pluripotent stem cells from individuals with common or rare CFTR variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function we adapt two established in vitro assays for use in induced pluripotent stem cell-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we detect genotype-specific differences in CFTR baseline function and response to CFTR modulators. These results demonstrate the potential of the human induced pluripotent stem cell platform as a research tool to study CF and in particular accelerate therapeutic development for CF caused by rare variants.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transporte de Íons
11.
J Virol ; 84(3): 1656-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906915

RESUMO

Hepatitis C virus (HCV)-specific CD8(+) T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127(+) T cells is driven by viral variation.


Assuntos
Hepacivirus/genética , Linfócitos T/imunologia , Sequência de Aminoácidos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Genótipo , Hepatite C/terapia , Hepatite C/virologia , Humanos , Subunidade alfa de Receptor de Interleucina-7/química , Subunidade alfa de Receptor de Interleucina-7/imunologia , Resultado do Tratamento
12.
Ann Am Thorac Soc ; 18(9): 1560-1566, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647225

RESUMO

The unprecedented public health burdens of coronavirus disease (COVID-19) have intensified the urgency of identifying effective, low-cost treatments that limit the need for advanced life support measures and improve clinical outcomes. However, personal protective equipment and staffing shortages, disease virulence, and infectivity have created significant barriers to traditional clinical trial practices. We present the novel design of a pragmatic, adaptive, multicenter, international, prospective randomized controlled clinical trial evaluating the safety and effectiveness of awake prone positioning in spontaneously breathing patients with COVID-19 (APPEX-19 [Awake Prone Position for Early Hypoxemia in COVID-19]). Key innovations of this trial include 1) a novel smartphone-based communication process that facilitates rapid enrollment and intervention delivery while allowing social distancing and conservation of personal protective equipment, 2) Bayesian response-adaptive randomization to allow preferential assignment to the most effective intervention and expedite trial completion compared with frequentist designs, 3) remote electronic collection of patient-reported outcomes and electronic medical record data, and 4) pragmatic prospective use of patient-reported data and data collected as part of routine clinical care. Clinical trial registered with www.clinicaltrials.gov (NCT04344587).


Assuntos
COVID-19 , Vigília , Teorema de Bayes , Humanos , Hipóxia , Estudos Multicêntricos como Assunto , Decúbito Ventral , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento
13.
Cell Stem Cell ; 28(1): 79-95.e8, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33098807

RESUMO

The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Células Epiteliais , Humanos , Pulmão , Traqueia
14.
Nat Commun ; 11(1): 215, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924806

RESUMO

Efficient generation of human induced pluripotent stem cell (hiPSC)-derived human intestinal organoids (HIOs) would facilitate the development of in vitro models for a variety of diseases that affect the gastrointestinal tract, such as inflammatory bowel disease or Cystic Fibrosis. Here, we report a directed differentiation protocol for the generation of mesenchyme-free HIOs that can be primed towards more colonic or proximal intestinal lineages in serum-free defined conditions. Using a CDX2eGFP iPSC knock-in reporter line to track the emergence of hindgut progenitors, we follow the kinetics of CDX2 expression throughout directed differentiation, enabling the purification of intestinal progenitors and robust generation of mesenchyme-free organoids expressing characteristic markers of small intestinal or colonic epithelium. We employ HIOs generated in this way to measure CFTR function using cystic fibrosis patient-derived iPSC lines before and after correction of the CFTR mutation, demonstrating their future potential for disease modeling and therapeutic screening applications.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Intestinos/fisiologia , Mesoderma/metabolismo , Organoides/metabolismo , Fator de Transcrição CDX2/metabolismo , Diferenciação Celular , Fibrose Cística , Células Epiteliais , Técnicas de Introdução de Genes , Vetores Genéticos , Humanos , Intestino Delgado , Organoides/citologia , Fator Nuclear 1 de Tireoide/genética
15.
J Virol ; 82(6): 3154-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18160439

RESUMO

We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8(+) and CD4(+) T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.


Assuntos
Antígenos CD/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Adolescente , Adulto , Idoso , Antígenos CD/biossíntese , Antígenos CD/sangue , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/sangue , Biomarcadores , Antígenos CD28/biossíntese , Antígenos CD28/sangue , Antígenos CD28/imunologia , Feminino , Hepatite C/sangue , Hepatite C/fisiopatologia , Hepatite C Crônica/sangue , Hepatite C Crônica/imunologia , Hepatite C Crônica/fisiopatologia , Humanos , Imunidade Celular , Fígado/imunologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Receptor de Morte Celular Programada 1
16.
Hepatology ; 48(6): 1769-78, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19026009

RESUMO

UNLABELLED: Resistance mutations to hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease inhibitors in <1% of the viral quasispecies may still allow >1000-fold viral load reductions upon treatment, consistent with their reported reduced replicative fitness in vitro. Recently, however, an R155K protease mutation was reported as the dominant quasispecies in a treatment-naïve individual, raising concerns about possible full drug resistance. To investigate the prevalence of dominant resistance mutations against specifically targeted antiviral therapy for HCV (STAT-C) in the population, we analyzed HCV genome sequences from 507 treatment-naïve patients infected with HCV genotype 1 from the United States, Germany, and Switzerland. Phylogenetic sequence analysis and viral load data were used to identify the possible spread of replication-competent, drug-resistant viral strains in the population and to infer the consequences of these mutations upon viral replication in vivo. Mutations described to confer resistance to the protease inhibitors Telaprevir, BILN2061, ITMN-191, SCH6 and Boceprevir; the NS5B polymerase inhibitor AG-021541; and to the NS4A antagonist ACH-806 were observed mostly as sporadic, unrelated cases, at frequencies between 0.3% and 2.8% in the population, including two patients with possible multidrug resistance. Collectively, however, 8.6% of the patients infected with genotype 1a and 1.4% of those infected with genotype 1b carried at least one dominant resistance mutation. Viral loads were high in the majority of these patients, suggesting that drug-resistant viral strains might achieve replication levels comparable to nonresistant viruses in vivo. CONCLUSION: Naturally occurring dominant STAT-C resistance mutations are common in treatment-naïve patients infected with HCV genotype 1. Their influence on treatment outcome should further be characterized to evaluate possible benefits of drug resistance testing for individual tailoring of drug combinations when treatment options are limited due to previous nonresponse to peginterferon and ribavirin.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepacivirus/enzimologia , Hepatite C/tratamento farmacológico , Mutação/genética , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Estudos de Coortes , Feminino , Testes Genéticos , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/sangue , Hepatite C/virologia , Humanos , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/uso terapêutico , Masculino , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Feniltioureia/análogos & derivados , Feniltioureia/farmacologia , Feniltioureia/uso terapêutico , Filogenia , Prolina/análogos & derivados , Prolina/farmacologia , Prolina/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Carga Viral , Proteínas não Estruturais Virais/antagonistas & inibidores
17.
Front Pharmacol ; 10: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800069

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the life-limiting hereditary disease, cystic fibrosis (CF). Decreased or absent functional CFTR protein in airway epithelial cells leads to abnormally viscous mucus and impaired mucociliary transport, resulting in bacterial infections and inflammation causing progressive lung damage. There are more than 2000 known variants in the CFTR gene. A subset of CF individuals with specific CFTR mutations qualify for pharmacotherapies of variable efficacy. These drugs, termed CFTR modulators, address key defects in protein folding, trafficking, abundance, and function at the apical cell membrane resulting from specific CFTR mutations. However, some CFTR mutations result in little or no CFTR mRNA or protein expression for which a pharmaceutical strategy is more challenging and remote. One approach to rescue CFTR function in the airway epithelium is to replace cells that carry a mutant CFTR sequence with cells that express a normal copy of the gene. Cell-based therapy theoretically has the potential to serve as a one-time cure for CF lung disease regardless of the causative CFTR mutation. In this review, we explore major challenges and recent progress toward this ambitious goal. The ideal therapeutic cell would: (1) be autologous to avoid the complications of rejection and immune-suppression; (2) be safely modified to express functional CFTR; (3) be expandable ex vivo to generate sufficient cell quantities to restore CFTR function; and (4) have the capacity to engraft, proliferate and persist long-term in recipient airways without complications. Herein, we explore human bronchial epithelial cells (HBECs) and induced pluripotent stem cells (iPSCs) as candidate cell therapies for CF and explore the challenges facing their delivery to the human airway.

18.
J Med Virol ; 80(8): 1370-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18551618

RESUMO

Infection with genotype 4 of the Hepatitis C virus is common in Africa and the Mediterranean area, but has also been found at increasing frequencies in injection drug users in Europe and North America. Full length viral sequences to characterize viral diversity and structure have recently become available mostly for subtype 4a, and studies in Egypt and Saudi Arabia, where high proportions of subtype 4a infected patients exist, have begun to establish optimized treatment regimens. However knowledge about other subtype variants of genotype 4 present in less developed African states is lacking. In this study the full coding region from so far poorly characterized variants of HCV genotype 4 was amplified and sequenced using a long range PCR technique. Sequences were analyzed with respect to phylogenetic relationship, possible recombination and prominent sequence characteristics compared to other known HCV strains. We present for the first time two full-length sequences from the HCV genotype 4k, in addition to five strains from HCV genotypes 4d and 4f. Reference sequences for accurate HCV genotyping are required for optimized treatment, and a better knowledge of the global viral sequence diversity is needed to guide vaccines or new drugs effective in the world wide epidemic.


Assuntos
Hepacivirus/classificação , Hepacivirus/genética , Fases de Leitura Aberta/genética , Sequência de Aminoácidos , Sequência de Bases , Genótipo , Hepatite C/virologia , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Recombinação Genética , Padrões de Referência , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Ann Am Thorac Soc ; 13(6): 933-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27088424

RESUMO

Streptococcus pneumoniae is an important global pathogen that causes a wide range of clinical disease in children and adults. Pneumococcal pneumonia is by far the common presentation of noninvasive and invasive pneumococcal disease and affects the young, the elderly, and the immunocompromised disproportionately. Patients with chronic pulmonary diseases are also at higher risk for pneumococcal infections. Substantial progress over the century has been made in the understanding of pneumococcal immunobiology and the prevention of invasive pneumococcal disease through vaccination. Currently, two pneumococcal vaccines are available for individuals at risk of pneumococcal disease: the 23-valent pneumococcal polysaccharide vaccine (PPV23) and the 13-valent pneumococcal protein-conjugate vaccine (PCV13). The goal of pneumococcal vaccination is to stimulate effective antipneumococcal antibody and mucosal immunity response and immunological memory. Vaccination of infants and young children with pneumococcal conjugate vaccine has led to significant decrease in nasal carriage rates and pneumococcal disease in all age groups. Recent pneumococcal vaccine indication and schedule recommendations on the basis of age and risk factors are outlined in this Focused Review. As new pneumococcal vaccine recommendations are being followed, continued efforts are needed to address the vaccine efficacy in the waning immunity of the ever-aging population, the implementation of vaccines using two different vaccines under very specific schedules and their real world clinical and cost effectiveness, and the development of next generation pneumococcal vaccines.


Assuntos
Vacinas Pneumocócicas/uso terapêutico , Pneumonia Pneumocócica/prevenção & controle , Análise Custo-Benefício , Humanos , Imunidade Coletiva , Esquemas de Imunização , Pneumonia Pneumocócica/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Streptococcus pneumoniae , Vacinas Conjugadas/uso terapêutico
20.
Virology ; 436(2): 268-73, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23290631

RESUMO

Hepatitis C virus (HCV) replication is limited by cyclophilin inhibitors but it remains unclear how viral genetic variations influence susceptibility to cyclosporine (cyclosporine A, CsA), a cyclophilin inhibitor. In this study HCV from liver transplant patients was sequenced before and after CsA exposure. Phenotypic analysis of NS5A sequence was performed by using HCV sub genomic replicon to determine CsA susceptibility. The data indicates an atypical proline at position 328 in NS5A causes increases CsA sensitivity both in the context of genotype 1a and 1b residues. Point mutants mimicking other naturally occurring residues at this position also increased (Ala) or decreased (Arg) replicon sensitivity to CsA relative to the typical threonine (genotype 1a) or serine (genotype 1b) at this position. This work has implications for treatment of HCV by cyclophilin inhibitors.


Assuntos
Antivirais/farmacologia , Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Análise Mutacional de DNA , Hepacivirus/isolamento & purificação , Hepacivirus/fisiologia , Hepatite C/virologia , Humanos , Transplante de Fígado , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Mutação Puntual , Prolina/genética , Transplante , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA