Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 199(1): 224-232, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533442

RESUMO

HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrPc) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrPc (sPrPc) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrPc from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrPc increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrPc-treated astrocytes containing factors produced in response to this treatment, but not rPrPc by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrPc in monocyte recruitment into the brain. Furthermore, we examined whether PrPc participates in glutamate uptake and found that rPrPc decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrPc shedding and the effect of this sPrPc on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrPc could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/fisiopatologia , Infecções por HIV/fisiopatologia , HIV/fisiologia , Monócitos/imunologia , Monócitos/virologia , Proteínas Priônicas/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Células Cultivadas , Sistema Nervoso Central/virologia , Quimiocina CCL2/metabolismo , Quimiocina CCL2/farmacologia , Quimiocina CXCL1/imunologia , Quimiocina CXCL1/metabolismo , Quimiotaxia de Leucócito , Dipeptídeos/farmacologia , HIV/imunologia , Infecções por HIV/virologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Interleucina-8/imunologia , Interleucina-8/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Priônicas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Lab Invest ; 98(10): 1347-1359, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959417

RESUMO

The cellular prion protein (PrPc) is a surface adhesion molecule expressed at junctions of various cell types including brain microvascular endothelial cells (BMVEC) that are important components of the blood-brain barrier (BBB). PrPc is involved in several physiological processes including regulation of epithelial cell barrier function and monocyte migration across BMVEC. BBB dysfunction and disruption are significant events in central nervous system (CNS) inflammatory processes including HIV neuropathogenesis. Tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) are two inflammatory factors that have been implicated in the processes that affect BBB integrity. To examine the effect of inflammation on PrPc expression in BMVEC, we used these mediators and found that TNF-α and VEGF decrease surface PrPc on primary human BMVEC. We also showed that these factors decrease total PrPc protein as well as mRNA, indicating that they regulate expression of this protein by de novo synthesis. To determine the effect of PrPc loss from the surface of BMVEC on barrier integrity, we used small hairpin RNAs to knockdown PrPc. We found that the absence of PrPc from BMVEC causes increased permeability as determined by a fluorescein isothiocyanate (FITC)-dextran permeability assay. This suggests that cell surface PrPc is essential for endothelial monolayer integrity. To determine the mechanism by which PrPc downregulation leads to increased permeability of an endothelial monolayer, we examined changes in expression and localization of tight junction proteins, occludin and claudin-5, and found that decreased PrPc leads to decreased total and membrane-associated occludin and claudin-5. We propose that an additional mechanism by which inflammatory factors affect endothelial monolayer permeability is by decreasing cell-associated PrPc. This increase in permeability may have subsequent consequences that lead to CNS damage.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas PrPC/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Células Cultivadas , Claudina-5/metabolismo , Humanos , Inflamação/metabolismo , Ocludina/metabolismo
3.
J Immunol ; 194(7): 3246-58, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25716997

RESUMO

Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia de Leucócito/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Moléculas de Adesão Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Humanos , Monócitos/efeitos dos fármacos , Fenótipo , Fosfopeptídeos/metabolismo , Fosforilação , Proteoma , Proteômica , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Opioides/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Neuroinflammation ; 13(1): 54, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26934876

RESUMO

BACKGROUND: HIV-associated neurocognitive disorders (HAND) are a major complication in at least half of the infected population despite effective antiretroviral treatment and immune reconstitution. HIV-associated CNS damage is not correlated with active viral replication but instead is associated with mechanisms that regulate inflammation and neuronal compromise. Our data indicate that one of these mechanisms is mediated by gap junction channels and/or hemichannels. Normally, gap junction channels shutdown under inflammatory conditions, including viral diseases. However, HIV infection upregulates Connexin43 (Cx43) expression and maintains gap junctional communication by unknown mechanism(s). METHODS: Human primary astrocytes were exposed to several HIV proteins as well as to HIV, and expression and function of Connexin43- and Connexin30-containing channels were determined by western blot, immunofluorescence, microinjection of a fluorescent tracer and chromatin immunoprecipitation (ChIP). RESULTS: Here, we demonstrate that HIV infection increases Cx43 expression in vivo. HIV-tat, the transactivator of the virus, and no other HIV proteins tested, increases Cx43 expression and maintains functional gap junctional communication in human astrocytes. Cx43 upregulation is mediated by binding of the HIV-tat protein to the Cx43 promoter, but not to the Cx30 promoter, resulting in increased Cx43 messenger RNA (mRNA) and protein as well as gap junctional communication. CONCLUSIONS: We propose that HIV-tat contributes to the spread of intracellular toxic signals generated in a few HIV-infected cells into surrounding uninfected cells by upregulating gap junctional communication. In the current antiretroviral era, where HIV replication is often completely suppressed, viral factors such as HIV-tat are still produced and released from infected cells. Thus, blocking the effects of HIV-tat could result in new strategies to reduce the damaging consequences of HIV infection of the CNS.


Assuntos
Nefropatia Associada a AIDS/metabolismo , Astrócitos/metabolismo , Conexina 43/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Nefropatia Associada a AIDS/patologia , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Conexina 43/genética , Junções Comunicantes/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/genética
5.
Cytometry A ; 87(10): 897-907, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25929817

RESUMO

The blood-brain barrier (BBB) is primarily comprised of brain microvascular endothelial cells (BMVEC) and astrocytes and serves as a physical and chemical barrier that separates the periphery from the brain. We describe a flow cytometric method using our in vitro model of the human BBB to characterize BMVEC surface junctional proteins critical for maintenance of barrier function, cell viability, and leukocyte adhesion. For this methodology, BMVEC are cocultured with astrocytes in a transwell tissue culture insert to establish the barrier, after which time the BBB are treated with specific agents, and the BMVEC collected for flow cytometric analyses. We use a standard and optimized method to recover the BMVEC from the coculture model that maintains junctional protein expression and cell viability. A novel leukocyte adhesion assay enables a quantitative analysis of peripheral blood mononuclear cell (PBMC) interactions with the BMVEC and can be used to assess the adhesion of many cell types to the BBB. Furthermore, this method enables the concomitant analysis of a large number of adhesion molecules and tight junction proteins on both the BMVEC and adherent PBMC under homeostatic and pathologic conditions. Flow cytometry is an extremely powerful tool, and this technique can also be applied to assess variables not performed in this study, including cell cycle progression, and calcium flux.


Assuntos
Barreira Hematoencefálica/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Citometria de Fluxo , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica/crescimento & desenvolvimento , Adesão Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo
6.
Malar J ; 14: 513, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691993

RESUMO

BACKGROUND: Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies. METHODS: To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume. RESULTS: The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability. CONCLUSIONS: Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM.


Assuntos
Encéfalo/patologia , Citocinas/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Malária Cerebral/patologia , Fosfolipases A2/metabolismo , Animais , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Lactente , Malaui
7.
J Immunol ; 188(9): 4488-95, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22450808

RESUMO

Macrophages play a significant role in HIV infection, viral rebound, and the development of AIDS. However, the function of host proteins in viral replication is incompletely characterized in macrophages. Purinergic receptors P2X and P2Y are major components of the macrophage immune response to pathogens, inflammation, and cellular damage. We demonstrate that these receptors are necessary for HIV infection of primary human macrophages. Inhibition of purinergic receptors results in a significant reduction in HIV replication in macrophages. This inhibition is independent of viral strain and is dose dependent. We also identify that P2X(1), P2X(7), and P2Y(1) receptors are involved in viral replication. We show that P2X(1), but not P2X(7) or P2Y(1), is necessary for HIV entry into macrophages. We demonstrate that interaction of the HIV surface protein gp120 with macrophages stimulates an increase in ATP release. Thus, we propose that HIV's binding to macrophages triggers a local release of ATP that stimulates purinergic receptors and facilitates HIV entry and subsequent stages of viral replication. Our data implicate a novel role for a family of host proteins in HIV replication in macrophages and suggest new therapeutic targets to reduce the devastating consequences of HIV infection and AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , HIV-1/fisiologia , Receptores Purinérgicos/imunologia , Internalização do Vírus , Replicação Viral/imunologia , Trifosfato de Adenosina/imunologia , Células Cultivadas , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Macrófagos
8.
J Neurochem ; 127(5): 644-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23992092

RESUMO

HIV entry into the CNS is an early event after peripheral infection, resulting in neurologic dysfunction in a significant number of individuals despite successful anti-retroviral therapy. The mechanisms by which HIV mediates CNS dysfunction are not well understood. Our group recently demonstrated that HIV infection of astrocytes results in survival of HIV infected cells and apoptosis of surrounding uninfected astrocytes by the transmission of toxic intracellular signals through gap junctions. In the current report, we characterize the intracellular signaling responsible for this bystander apoptosis. Here, we demonstrate that HIV infection of astrocytes results in release of cytochrome C from the mitochondria into the cytoplasm, and dysregulation of inositol trisphosphate/intracellular calcium that leads to toxicity to neighboring uninfected astrocytes. Blocking these dysregulated pathways results in protection from bystander apoptosis. These secondary messengers that are toxic in uninfected cells are not toxic in HIV infected cells, suggesting that HIV protects these cells from apoptosis. Thus, our data provide novel mechanisms of HIV mediated toxicity and generation of HIV reservoirs. Our findings provide new potential therapeutic targets to reduce the CNS damage resulting from HIV infection and to eradicate the generation of viral reservoirs. We demonstrated that HIV infection of astrocytes protects infected cells from apoptosis but results in cell death of surrounding uninfected astrocytes by a mechanism that is dependent on gap junction channels, dysregulation of mitochondrial cytochrome C (CytC), and cell to cell diffusion of inositol trisphosphate (IP3 ) and calcium. Our data provide essential information about generation of brain reservoirs and the mechanism of toxicity mediated by the virus.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Efeito Espectador/fisiologia , Citocromos c/metabolismo , Infecções por HIV/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Efeito Espectador/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Citocromos c/farmacologia , Citoplasma/metabolismo , Feto/citologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Infecções por HIV/patologia , Humanos , Microinjeções , Mitocôndrias/metabolismo
9.
J Exp Med ; 204(4): 929-40, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-17420269

RESUMO

Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A(2) (TXA(2)). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA(2) is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA(2) accounts for up to 90% of the circulating levels of TXA(2) in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA(2) receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA(2) synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA(2) in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA(2) may result in novel therapeutic targets for a disease with limited treatment options.


Assuntos
Doença de Chagas/metabolismo , Doença de Chagas/patologia , Tromboxano A2/metabolismo , Trypanosoma cruzi/patogenicidade , Doença Aguda , Animais , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/parasitologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Tromboxano A2/deficiência , Tromboxano A2/genética , Trypanosoma cruzi/fisiologia
11.
PLoS One ; 18(5): e0285926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205656

RESUMO

Persistent inflammation contributes to the development of cardiovascular disease (CVD) as an HIV-associated comorbidity. Innate immune cells such as monocytes are major drivers of inflammation in men and women with HIV. The study objectives are to examine the contribution of circulating non-classical monocytes (NCM, CD14dimCD16+) and intermediate monocytes (IM, CD14+CD16+) to the host response to long-term HIV infection and HIV-associated CVD. Women with and without chronic HIV infection (H) were studied. Subclinical CVD (C) was detected as plaques imaged by B-mode carotid artery ultrasound. The study included H-C-, H+C-, H-C+, and H+C+ participants (23 of each, matched on race/ethnicity, age and smoking status), selected from among enrollees in the Women's Interagency HIV Study. We assessed transcriptomic features associated with HIV or CVD alone or comorbid HIV/CVD comparing to healthy (H-C-) participants in IM and NCM isolated from peripheral blood mononuclear cells. IM gene expression was little affected by HIV alone or CVD alone. In IM, coexisting HIV and CVD produced a measurable gene transcription signature, which was abolished by lipid-lowering treatment. In NCM, versus non-HIV controls, women with HIV had altered gene expression, irrespective of whether or not they had comorbid CVD. The largest set of differentially expressed genes was found in NCM among women with both HIV and CVD. Genes upregulated in association with HIV included several potential targets of drug therapies, including LAG3 (CD223). In conclusion, circulating monocytes from patients with well controlled HIV infection demonstrate an extensive gene expression signature which may be consistent with the ability of these cells to serve as potential viral reservoirs. Gene transcriptional changes in HIV patients were further magnified in the presence of subclinical CVD.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Masculino , Humanos , Feminino , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/tratamento farmacológico , Monócitos/metabolismo , Leucócitos Mononucleares , Doenças Cardiovasculares/complicações , Inflamação/metabolismo , Expressão Gênica
12.
J Neurosci ; 31(26): 9456-65, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21715610

RESUMO

HIV infection of the CNS is an early event after primary infection, resulting in neurological complications in a significant number of individuals despite antiretroviral therapy (ART). The main cells infected with HIV within the CNS are macrophages/microglia and a small fraction of astrocytes. The role of these few infected astrocytes in the pathogenesis of neuroAIDS has not been examined extensively. Here, we demonstrate that few HIV-infected astrocytes (4.7 ± 2.8% in vitro and 8.2 ± 3.9% in vivo) compromise blood-brain barrier (BBB) integrity. This BBB disruption is due to endothelial apoptosis, misguided astrocyte end feet, and dysregulation of lipoxygenase/cyclooxygenase, BK(Ca) channels, and ATP receptor activation within astrocytes. All of these alterations in BBB integrity induced by a few HIV-infected astrocytes were gap junction dependent, as blocking these channels protected the BBB from HIV-infected astrocyte-mediated compromise. We also demonstrated apoptosis in vivo of BBB cells in contact with infected astrocytes using brain tissue sections from simian immunodeficiency virus-infected macaques as a model of neuroAIDS, suggesting an important role for these few infected astrocytes in the CNS damage seen with HIV infection. Our findings describe a novel mechanism of bystander BBB toxicity mediated by low numbers of HIV-infected astrocytes and amplified by gap junctions. This mechanism of toxicity contributes to understanding how CNS damage is spread even in the current ART era and how minimal or controlled HIV infection still results in cognitive impairment in a large population of infected individuals.


Assuntos
Astrócitos/virologia , Barreira Hematoencefálica/virologia , Encéfalo/virologia , Junções Comunicantes/virologia , Animais , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Contagem de Células , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais/virologia , Imunofluorescência , Junções Comunicantes/patologia , HIV-1 , Humanos , Marcação In Situ das Extremidades Cortadas , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
13.
Lab Invest ; 92(8): 1213-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22641100

RESUMO

Alterations to blood-brain barrier (BBB) adhesion molecules and junctional integrity during neuroinflammation can promote central nervous system (CNS) pathology. The chemokine CCL2 is elevated during CNS inflammation and is associated with endothelial dysfunction. The effects of CCL2 on endothelial adherens junctions (AJs) have not been defined. We demonstrate that CCL2 transiently induces Src-dependent disruption of human brain microvascular endothelial AJ. ß-Catenin is phosphorylated and traffics from the AJ to PECAM-1 (platelet endothelial cell adhesion molecule-1), where it is sequestered at the membrane. PECAM-1 is also tyrosine-phosphorylated, an event associated with recruitment of the phosphatase SHP-2 (Src homology 2 domain-containing protein phosphatase) to PECAM-1, ß-catenin release from PECAM-1, and reassociation of ß-catenin with the AJ. Surface localization of PECAM-1 is increased in response to CCL2. This may enable the endothelium to sustain CCL2-induced alterations in AJ and facilitate recruitment of leukocytes into the CNS. Our novel findings provide a mechanism for CCL2-mediated disruption of endothelial junctions that may contribute to BBB dysfunction and increased leukocyte recruitment in neuroinflammatory diseases.


Assuntos
Junções Aderentes/metabolismo , Encéfalo/patologia , Quimiocina CCL2/metabolismo , Encefalite/metabolismo , Antígenos CD/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Caderinas/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Encefalite/patologia , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Humanos , Microvasos/imunologia , Microvasos/patologia , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Recombinantes/metabolismo , beta Catenina/metabolismo
14.
J Neuroinflammation ; 9: 203, 2012 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-22901451

RESUMO

BACKGROUND: Perivascular macrophages and microglia are critical to CNS function. Drugs of abuse increase extracellular dopamine in the CNS, exposing these cells to elevated levels of dopamine. In rodent macrophages and human T-cells, dopamine was shown to modulate cellular functions through activation of dopamine receptors and other dopaminergic proteins. The expression of these proteins and the effects of dopamine on human macrophage functions had not been studied. METHODS: To study dopaminergic gene expression, qRT-PCR was performed on mRNA from primary human monocyte derived macrophages (MDM). Expression and localization of dopaminergic proteins was examined by immunoblotting isolated plasma membrane, total membrane and cytosolic proteins from MDM. To characterize dopamine-mediated changes in cytokine production in basal and inflammatory conditions, macrophages were treated with different concentrations of dopamine in the presence or absence of LPS and cytokine production was assayed by ELISA. Statistical significance was determined using two-tailed Students' T-tests or Wilcoxen Signed Rank tests. RESULTS: These data show that MDM express mRNA for all five subtypes of dopamine receptors, and that dopamine receptors 3 and 4 are expressed on the plasma membrane. MDM also express mRNA for the dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC). DAT is expressed on the plasma membrane, VMAT2 on cellular membranes and TH and AADC are in the cytosol. Dopamine also alters macrophage cytokine production in both untreated and LPS-treated cells. Untreated macrophages show dopamine mediated increases IL-6 and CCL2. Macrophages treated with LPS show increased IL-6, CCL2, CXCL8 and IL-10 and decreased TNF-α. CONCLUSIONS: Monocyte derived macrophages express dopamine receptors and other dopaminergic proteins through which dopamine may modulate macrophage functions. Thus, increased CNS dopamine levels due to drug abuse may exacerbate the development of neurological diseases including Alzheimer's disease and HIV associated neurological disorders.


Assuntos
Dopamina/metabolismo , Macrófagos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Plasma/citologia , Plasma/metabolismo , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Frações Subcelulares/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
15.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740279

RESUMO

HIV-neurocognitive impairment (HIV-NCI) can be a debilitating condition for people with HIV (PWH), despite the success of antiretroviral therapy (ART). Substance use disorder is often a comorbidity with HIV infection. The use of methamphetamine (meth) increases systemic inflammation and CNS damage in PWH. Meth may also increase neuropathogenesis through the functional dysregulation of cells that harbor HIV. Perivascular macrophages are long-lived reservoirs for HIV in the CNS. The impaired clearance of extracellular debris and increased release of reactive oxygen species (ROS) by HIV-infected macrophages cause neurotoxicity. Macroautophagy is a vital intracellular pathway that can regulate, in part, these deleterious processes. We found in HIV-infected primary human macrophages that meth inhibits phagocytosis of aggregated amyloid-ß, increases total ROS, and dysregulates autophagic processes. Treatment with widely prescribed ART drugs had minimal effects, although there may be an improvement in phagocytosis when co-administered with meth. Pharmacologically inhibited lysosomal degradation, but not induction of autophagy, further increased ROS in response to meth. Using mass spectrometry, we identified the differentially expressed proteins in meth-treated, HIV-infected macrophages that participate in phagocytosis, mitochondrial function, redox metabolism, and autophagy. Significantly altered proteins may be novel targets for interventional strategies that restore functional homeostasis in HIV-infected macrophages to improve neurocognition in people with HIV-NCI using meth.

16.
J Leukoc Biol ; 112(5): 1317-1328, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205434

RESUMO

HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on µ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/metabolismo , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Heroína/metabolismo , Heroína/farmacologia , Qualidade de Vida , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Macrófagos/metabolismo , Receptores Opioides/metabolismo
17.
J Neuroimaging ; 32(1): 158-170, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520593

RESUMO

BACKGROUND AND PURPOSE: People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS: Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS: Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS: 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.


Assuntos
Infecções por HIV , Ácido Aspártico/metabolismo , Encéfalo/patologia , HIV/metabolismo , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Projetos Piloto
18.
Front Immunol ; 13: 952183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059515

RESUMO

HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.


Assuntos
Infecções por HIV , Metanfetamina , Humanos , Macrófagos/metabolismo , Metanfetamina/farmacologia , Monócitos , Qualidade de Vida
19.
Front Immunol ; 13: 1004985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275760

RESUMO

Thirty-eight million people worldwide are living with HIV, PWH, a major public health problem. Antiretroviral therapy (ART) revolutionized HIV treatment and significantly increased the lifespan of PWH. However, approximately 15-50% of PWH develop HIV associated neurocognitive disorders (HIV-NCI), a spectrum of cognitive deficits, that negatively impact quality of life. Many PWH also have opioid use disorder (OUD), and studies in animal models of HIV infection as well as in PWH suggest that OUD can contribute to HIV-NCI. The synthetic opioid agonist, buprenorphine, treats OUD but its effects on HIV-NCI are unclear. We reported that human mature inflammatory monocytes express the opioid receptors MOR and KOR, and that buprenorphine reduces important steps in monocyte transmigration. Monocytes also serve as HIV reservoirs despite effective ART, enter the brain, and contribute to HIV brain disease. Using EcoHIV infected mice, an established model of HIV infection and HIV-NCI, we previously showed that pretreatment of mice prior to EcoHIV infection reduces mouse monocyte entry into the brain and prevents NCI. Here we show that buprenorphine treatment of EcoHIV infected mice with already established chronic NCI completely reverses the disease. Disease reversal was associated with a significant reduction in brain inflammatory monocytes and reversal of dendritic injury in the cortex and hippocampus. These results suggest that HIV-NCI persistence may require a continuing influx of inflammatory monocytes into the brain. Thus, we recommend buprenorphine as a potential therapy for mitigation of HIV brain disease in PWH with or without OUD.


Assuntos
Encefalopatias , Buprenorfina , Infecções por HIV , Transtornos Relacionados ao Uso de Opioides , Animais , Humanos , Camundongos , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Qualidade de Vida , Transtornos Relacionados ao Uso de Opioides/complicações , Receptores Opioides
20.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36345941

RESUMO

HIV-specific chimeric antigen receptor-T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4+ T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7+ stem cell-like/central memory T cells (TSCM/TCM) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4+ T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).


Assuntos
Infecções por HIV , HIV-1 , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Leucócitos Mononucleares , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA