Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2218247120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877851

RESUMO

Needle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage. Here we have developed a approach to deliver liposomes into the skin biolistically-by encapsulating them in a nano-sized shell made of Zeolitic Imidazolate Framework-8 (ZIF-8). When encapsulated within a crystalline and rigid coating, the liposomes are not only protected from thermal stress, but also shear stress. This protection from stressors is crucial, especially for formulations with cargo encapsulated inside the lumen of the liposomes. Moreover, the coating provides the liposomes with a solid exterior that allows the particles to penetrate the skin effectively. In this work, we explored the mechanical protection ZIF-8 provides to liposomes as a preliminary investigation for using biolistic delivery as an alternative to syringe-and-needle-based delivery of vaccines. We demonstrated that liposomes with a variety of surface charges could be coated with ZIF-8 using the right conditions, and this coating can be just as easily removed-without causing any damage to the protected material. The protective coating prevented the liposomes from leaking cargo and helped in their effective penetration when delivered into the agarose tissue model and porcine skin tissue.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Animais , Suínos , Lipossomos , Biolística , Materiais Biocompatíveis , Contaminação de Medicamentos
2.
Nanotechnology ; 33(30)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385831

RESUMO

Silver nanowires have a wide range of potential applications in stretchable and transparent electronics due to their excellent electrical, mechanical, and optical properties. For a successful application in electronic devices, evaluating the electrical reliability of these nanowires is required. We have studied experimentally the behavior of current density at failure for penta-twinned silver nanowires with diameters between 53 and 173 nm, for 93 samples. The current densities at failure are widely scattered, have an average of 9.7 × 107A cm-2, and a standard deviation of 2.96 × 107A cm-2. Heat-transfer modeling is employed to explain the results, and Weibull statistics are used to quantify failure probabilities, thus offering guidelines for future designs based on these nanowires. The scatter observed in the measurements is attributed to surface-roughness variations among samples, which lead to local hot spots of high current density. These results quantify the Joule heating electrical reliability of silver nanowires and highlight the importance of heat transfer in increasing it.

3.
Langmuir ; 35(48): 15628-15638, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397572

RESUMO

Nanoscale asperity-on-asperity sliding experiments were conducted using a nanoindentation apparatus inside a transmission electron microscope, allowing for atomic-scale resolution of contact formation, sliding, and adhesive separation of two silicon nanoasperities in real time. The formation and separation of the contacts without sliding revealed adhesion forces often below detectable limits (ca. 5 nN) or at most equal to values expected from van der Waals forces. Lateral sliding during contact by distances ranging from 3.7 µm down to as little as 20 nm resulted in an average 19× increase in the adhesive pull-off force, with increases as large as 32× seen. Adhesion after sliding increased with both the sliding speed and the applied normal contact stress. Unlike cold welding, where irreversible material changes like flow occur, these effects were repeatable and reversible multiple times, for multiple pairs of asperities. We hypothesize that sliding removes passivating surface terminal species, most likely hydrogen or hydroxyl groups, making sites available to form strong covalent bonds across the interface that increase adhesion. Upon separation, repassivation occurs within the experimentally limited lower bound time frame of 5 s, with full recovery of low adhesion. The results demonstrate the strong sliding history-dependence of adhesion, which hinges on the interplay between tribologically induced removal of adsorbed species and repassivation of unsaturated bonds on freshly separated surfaces by dissociative chemisorption.

4.
Nano Lett ; 18(1): 208-214, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257699

RESUMO

Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

5.
Nano Lett ; 16(1): 255-63, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26540253

RESUMO

The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (<10b(3)), suggesting dislocation nucleation as the rate controlling mechanism. Also, a remarkable brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

6.
Nano Lett ; 15(1): 139-46, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25279701

RESUMO

Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations to characterize the cyclic stress-strain behavior and plasticity mechanisms of pentatwinned silver nanowires with diameters thinner than 120 nm. The experimental measurements were enabled by a novel system allowing displacement-controlled tensile testing of nanowires, which also affords higher resolution for capturing stress-strain curves. We observe the Bauschinger effect, that is, asymmetric plastic flow, and partial recovery of the plastic deformation upon unloading. TEM observations and atomistic simulations reveal that these processes occur due to the pentatwinned structure and emerge from reversible dislocation activity. While the incipient plastic mechanism through the nucleation of stacking fault decahedrons (SFDs) is fully reversible, plasticity becomes only partially reversible as intersecting SFDs lead to dislocation reactions and entanglements. The observed plastic recovery is expected to have implications to the fatigue life and the application of silver nanowires to flexible electronics.

7.
Small ; 10(4): 725-33, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24115555

RESUMO

Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements.

8.
ACS Appl Mater Interfaces ; 16(23): 30506-30520, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805354

RESUMO

Low-dimensional materials, such as MoS2, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale in situ transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion (Wadh) between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS2 films deposited on Si scanning probe tips. A customized TEM/AFM nanoindenter permitted high-resolution imaging and force measurements in situ. The Wadh values for nanocrystalline and nominally amorphous MoS2 were 604 ± 323 mJ/m2 and 932 ± 647 mJ/m2, respectively, significantly higher than previously reported values for mechanically exfoliated MoS2 single crystals. Closely matched molecular dynamics (MD) simulations show that these high values can be explained by bonding between the opposing surfaces at defects such as grain boundaries. Simulations show that as grain size decreases, the number of bonds formed, the Wadh and its variability all increase, further supporting that interfacial covalent bond formation causes high adhesion. In some cases, sliding between delaminated MoS2 flakes during separation is observed, which further increases the Wadh and the range of adhesive interaction. These results indicate that for low adhesion, the MoS2 grains should be large relative to the contact area to limit the opportunity for bonding, whereas small grains may be beneficial, where high adhesion is needed to prevent device delamination in flexible systems.

10.
Nano Lett ; 12(2): 970-6, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22191483

RESUMO

Semiconductor GaN NWs are promising components in next generation nano- and optoelectronic systems. In addition to their direct band gap, they exhibit piezoelectricity, which renders them particularly attractive in energy harvesting applications for self-powered devices. Nanowires are often considered as one-dimensional nanostructures; however, the electromechanical coupling leads to a third rank tensor that for wurtzite crystals (GaN NWs) possesses three independent coefficients, d(33), d(13), and d(15). Therefore, the full piezoelectric characterization of individual GaN NWs requires application of electric fields in different directions and measurements of associated displacements on the order of several picometers. In this Letter, we present an experimental approach based on scanning probe microscopy to directly quantify the three-dimensional piezoelectric response of individual GaN NWs. Experimental results reveal that GaN NWs exhibit strong piezoelectricity in three dimensions, with up to six times the effect in bulk. Based on finite element modeling, this finding has major implication on the design of energy harvesting systems exhibiting unprecedented levels of power density production. The presented method is applicable to other piezoelectric NW materials as well as wires manufactured along different crystallographic orientations.


Assuntos
Gálio/química , Nanofios/química , Eletricidade , Microscopia de Força Atômica , Tamanho da Partícula , Semicondutores
11.
Small ; 8(21): 3233-52, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22903735

RESUMO

The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in-situ mechanical deformation and electrical characterization in the emerging field of in-situ TEM electromechanical testing. This has enabled researchers to establish unambiguous synthesis-structure-property relations for one-dimensional nanostructures. In this article, the development and latest advances of several in-situ TEM techniques to carry out mechanical and electromechanical testing of nanowires and nanotubes are reviewed. Through discussion of specific examples, it is shown how the merging of several microsystems and TEM has led to significant insights into the behavior of nanowires and nanotubes, underscoring the significant role in-situ techniques play in the development of novel nanoscale systems and materials.

12.
Small ; 8(19): 2986-93, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22829327

RESUMO

A unique size-dependent strain hardening mechanism, that achieves both high strength and ductility, is demonstrated for penta-twinned Ag nanowires (NWs) through a combined experimental-computational approach. Thin Ag NWs are found to deform via the surface nucleation of stacking fault decahedrons (SFDs) in multiple plastic zones distributed along the NW. Twin boundaries lead to the formation of SFD chains that locally harden the NW and promote subsequent nucleation of SFDs at other locations. Due to surface undulations, chain reactions of SFD arrays are activated at stress concentrations and terminated as local stress decreases, revealing insensitivity to defects imparted by the twin structures. Thick NWs exhibit lower flow stress and number of distributed plastic zones due to the onset of necking accompanied by more complex dislocation structures.

13.
Nano Lett ; 11(2): 548-55, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21171602

RESUMO

We characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics. Our work establishes that elasticity size dependence is limited to nanowires with diameters smaller than 20 nm. For larger diameters, the elastic modulus converges to the bulk values of 300 GPa for c-axis and 267 GPa for a- and m-axis.


Assuntos
Gálio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Cristalização/métodos , Módulo de Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
14.
Front Plant Sci ; 13: 881879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832227

RESUMO

The topographic gradients of the Tropical Andes may have triggered species divergence by different mechanisms. Topography separates species' geographical ranges and offers climatic heterogeneity, which could potentially foster local adaptation to specific climatic conditions and result in narrowly distributed endemic species. Such a pattern is found in the Andean centered palm genus Aiphanes. To test the extent to which geographic barriers and climatic heterogeneity can explain distribution patterns in Aiphanes, we sampled 34 out of 36 currently recognized species in that genus and sequenced them by Sanger sequencing and/or sequence target capture sequencing. We generated Bayesian, likelihood, and species-tree phylogenies, with which we explored climatic trait evolution from current climatic occupation. We also estimated species distribution models to test the relative roles of geographical and climatic divergence in their evolution. We found that Aiphanes originated in the Miocene in Andean environments and possibly in mid-elevation habitats. Diversification is related to the occupation of the adjacent high and low elevation habitats tracking high annual precipitation and low precipitation seasonality (moist habitats). Different species in different clades repeatedly occupy all the different temperatures offered by the elevation gradient from 0 to 3,000 m in different geographically isolated areas. A pattern of conserved adaptation to moist environments is consistent among the clades. Our results stress the evolutionary roles of niche truncation of wide thermal tolerance by physical range fragmentation, coupled with water-related niche conservatism, to colonize the topographic gradient.

15.
Ecol Evol ; 8(16): 8030-8042, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250682

RESUMO

Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape-Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.

16.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29215174

RESUMO

Nanotwinned (nt)-metals exhibit superior mechanical and electrical properties compared to their coarse-grained and nanograined counterparts. nt-metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt-metals. Microscale 3D printing of nt-Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L-PED). The 3D printed nt-Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L-PED process enables direct 3D printing of layer-by-layer and complex 3D microscale nt-Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.

17.
Science ; 358(6370): 1614-1617, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29269477

RESUMO

The cataloging of the vascular plants of the Americas has a centuries-long history, but it is only in recent decades that an overview of the entire flora has become possible. We present an integrated assessment of all known native species of vascular plants in the Americas. Twelve regional and national checklists, prepared over the past 25 years and including two large ongoing flora projects, were merged into a single list. Our publicly searchable checklist includes 124,993 species, 6227 genera, and 355 families, which correspond to 33% of the 383,671 vascular plant species known worldwide. In the past 25 years, the rate at which new species descriptions are added has averaged 744 annually for the Americas, and we can expect the total to reach about 150,000.

18.
Rev. biol. trop ; 69(2)jun. 2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387648

RESUMO

Abstract Introduction: Understanding the phenology of plant populations is vital for their conservation and management. We studied the vegetative and reproductive phenology of the endangered palm Ceroxylon quindiuense along an altitudinal gradient in the Central Cordillera of Colombia. Objective: We describe the leaf production rate, and flowering and fruiting cycles, and calculate food offer for the fauna, as a tool for the proper management of the palm. Methods: At each sampling site (2 400, 2 600, 2 800, 3 000 m.a.s.l.), we marked 40 adult individuals (20 pistillate, 20 staminate), which we followed bimonthly for 24 months. We studied leaf production by counting fallen leaves. We followed flower and fruit production through observations with binoculars and photographs. Results: Each adult individual produced, on average, one leaf every 69 days. Although isolated individuals flowered throughout the year, most palms flowered synchronously at each elevation in October 2016-August 2017 and in August 2018-February 2019 and had ripe fruits 7-13 months later. Flowering started at 2 600 m, followed by 2 800 and 3 000 m. Palms at 2 400 m, the lower limit of the palm stands in the area, showed a singular behavior, with scarce flower and fruit production, some individuals that changed sex, and a higher proportion of pistillate palms. Each palm produced 1-11 (x̄ = 5.3, SD = 2.2) inflorescences and 1-10 (x̄ = 5.3, SD = 2.2) infructescences. The average number of fruits per infructescence was 4 465 (SD = 1 488). With an estimated population of adult palms between 256 000 and 600 000 and an overall ratio of pistillate: staminate individuals 1:1 or 1:2, total fruit production in the area during each fruiting period is estimated as 2.0-7.1 billion fruits. Conclusions: The huge number of flowers and fruits and their gradual availability along the altitudinal gradient have a major impact on the spatial and temporal distribution of food offer for fauna associated with the palm.


Resumen Introducción: Comprender la fenología de las poblaciones de plantas es vital para su conservación y manejo. Estudiamos la fenología vegetativa y reproductiva de la palma amenazada Ceroxylon quindiuense a lo largo de un gradiente altitudinal en la Cordillera Central de Colombia. Objetivo: Describimos la tasa de producción de hojas, los ciclos de floración y fructificación, y calculamos la oferta alimentaria para la fauna, como una herramienta para el adecuado manejo de la palma. Métodos: En cada sitio de muestreo (2 400, 2 600, 2 800, 3 000 m.s.n.m.), marcamos 40 individuos adultos (20 pistilados, 20 estaminados), que seguimos bimestralmente durante 24 meses. Estudiamos la producción de hojas contando las caídas al suelo. Seguimos la producción de flores y frutos a través de observaciones con binoculares y fotografías. Resultados: Cada individuo adulto produjo, en promedio, una hoja cada 69 días. Aunque los individuos aislados florecieron durante todo el año, la mayoría de las palmas florecieron sincrónicamente en cada elevación entre octubre 2016 y agosto 2017 y de agosto 2018 a febrero 2019 y tuvieron frutos maduros entre 7-13 meses después. La floración comenzó a los 2 600 m, seguida de los 2 800 y los 3 000 m. Las palmas a 2 400 m, límite inferior de los palmares de la zona, mostraron un comportamiento singular, con escasa producción de flores y frutos, varios individuos que cambiaron de sexo y una mayor proporción de palmas pistiladas. Cada palma produjo 1-11 (x̄ = 5.3, SD = 2.2) inflorescencias y 1-10 (x̄ = 5.3, SD = 2.2) infrutescencias. El número promedio de frutos por infrutescencia fue de 4 465. Con una población estimada de palmas adultas entre 256 000 y 600 000 y una proporción total de individuos pistilados: estaminados 1:1 o 1:2, la producción total de frutos en el área durante cada período de fructificación se estima en 2.0-7.1 mil millones de frutos. Conclusiones: La gran cantidad de flores y frutos y su progresiva disponibilidad a lo largo del gradiente tienen un impacto importante en la distribución espacial y temporal de la oferta de alimento para la fauna asociada a la palma.


Assuntos
Arecaceae/crescimento & desenvolvimento , Colômbia
19.
ACS Nano ; 9(5): 4675-85, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25942405

RESUMO

Recent major improvements to the transmission electron microscope (TEM) including aberration-corrected electron optics, light-element-sensitive analytical instrumentation, sample environmental control, and high-speed and sensitive direct electron detectors are becoming more widely available. When these advances are combined with in situ TEM tools, such as multimodal testing based on microelectromechanical systems, key measurements and insights on nanoscale material phenomena become possible. In particular, these advances enable metrology that allows for unprecedented correlation to quantum mechanics and the predictions of atomistic models. In this Perspective, we provide a summary of recent in situ TEM research that has leveraged these new TEM capabilities as well as an outlook of the opportunities that exist in the different areas of in situ TEM experimentation. Although these advances have improved the spatial and temporal resolution of TEM, a critical analysis of the various in situ TEM fields reveals that further progress is needed to achieve the full potential of the technology.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Mecanotransdução Celular , Nanotecnologia
20.
Ultramicroscopy ; 156: 23-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25974881

RESUMO

MEMS and other lab-on-a-chip systems are emerging as attractive alternatives to carry out experiments in situ the electron microscope. However, several electrical connections are usually required for operating these setups. Such connectivity is challenging inside the limited space of the TEM side-entry holder. Here, we design, implement and demonstrate a double-tilt TEM holder with capabilities for up to 9 electrical connections, operating in a high-resolution TEM. We describe the operating principle of the tilting and connection mechanisms and the physical implementation of the holder. To demonstrate the holder capabilities, we calibrate the tilting action, which has limits of ±15°, and establish the insulation resistance of the electronics to be 36GΩ, appropriate for measurements of currents down to the nano-amp (nA) regime. Furthermore, we demonstrate tensile testing of silver nanowires using a previously developed MEMS device for mechanical testing, using the implemented holder as the platform for electronic operation and sensing. The implemented holder can potentially have broad application to other areas where MEMS or electrically-actuated setups are used to carry out in situ TEM experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA