Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(4): 2703-2714, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491689

RESUMO

The development of supramolecular tools to modulate the excitonic properties of non-covalent assemblies paves the way to engineer new classes of semicondcuting materials relevant to flexible electronics. While controlling the assembly pathways of organic chromophores enables the formation of J-like and H-like aggregates, strategies to tailor the excitonic properties of pre-assembled aggregates through post-modification are scarce. In the present contribution, we combine supramolecular chemistry with redox chemistry to modulate the excitonic properties and solid-state morphologies of aggregates built from stacks of water-soluble perylene diimide building blocks. The n-doping of initially formed aggregates in an aqueous medium is shown to produce π-anion stacks for which spectroscopic properties unveil a non-negligible degree of electron-electron interactions. Oxidation of the n-doped intermediates produces metastable aggregates where free exciton bandwidths (ExBW) increase as a function of time. Kinetic data analysis reveals that the dynamic increase of free exciton bandwidth is associated with the formation of superstructures constructed by means of a nucleation-growth mechanism. By designing different redox-assisted assembly pathways, we highlight that the sacrificial electron donor plays a non-innocent role in regulating the structure-function properties of the final superstructures. Furthermore, supramolecular architectures formed via a nucleation-growth mechanism evolve into ribbon-like and fiber-like materials in the solid-state, as characterized by SEM and HRTEM. Through a combination of ground-state electronic absorption spectroscopy, electrochemistry, spectroelectrochemistry, microscopy, and modeling, we show that redox-assisted assembly provides a means to reprogram the structure-function properties of pre-assembled aggregates.

2.
Angew Chem Int Ed Engl ; 59(19): 7487-7493, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31984605

RESUMO

Locking-in the conformation of supramolecular assemblies provides a new avenue to regulate the (opto)electronic properties of robust nanoscale objects. In the present contribution, we show that the covalent tethering of a perylene bisimide (PBI)-derived supramolecular polymer with a molecular locker enables the formation of a locked superstructure equipped with emergent structure-function relationships. Experiments that exploit variable-temperature ground-state electronic absorption spectroscopy unambiguously demonstrate that the excitonic coupling between nearest neighboring units in the tethered superstructure is preserved at a temperature (371 K) where the pristine, non-covalent assembly exists exclusively in a molecularly dissolved state. A close examination of the solid-state morphologies reveals that the locked superstructure engenders the formation of hierarchical 1D materials which are not achievable by unlocked assemblies. To complement these structural attributes, we further demonstrate that covalently tethering a supramolecular polymer built from PBI subunits enables the emergence of electronic properties not evidenced in non-covalent assemblies. Using cyclic voltammetry experiments, the elucidation of the potentiometric properties of the locked superstructure reveals a 100-mV stabilization of the conduction band energy when compared to that recorded for the non-covalent assembly.

3.
ACS Appl Mater Interfaces ; 13(3): 4665-4675, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33443396

RESUMO

The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.

4.
ACS Appl Bio Mater ; 3(7): 4613-4625, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025460

RESUMO

Brain machine interfaces (BMIs), introduced into the daily lives of individuals with injuries or disorders of the nervous system such as spinal cord injury, stroke, or amyotrophic lateral sclerosis, can improve the quality of life. BMIs rely on the capability of microelectrode arrays to monitor the activity of large populations of neurons. However, maintaining a stable, chronic electrode-tissue interface that can record neuronal activity with a high signal-to-noise ratio is a key challenge that has limited the translation of such technologies. An electrode implant injury leads to a chronic foreign body response that is well-characterized and shown to affect the electrode-tissue interface stability. Several strategies have been applied to modulate the immune response, including the application of immunomodulatory drugs applied both systemically and locally. While the use of passive drug release at the site of injury has been exploited to minimize neuroinflammation, this strategy has all but failed as a bolus of anti-inflammatory drugs is released at predetermined times that are often inconsistent with the ongoing innate inflammatory process. Common strategies do not focus on the proper anchorage of soft hydrogel scaffolds on electrode surfaces, which often results in delamination of the porous network from electrodes. In this study, we developed a microwire platform that features a robust yet soft biocompatible hydrogel coating, enabling long-lasting drug release via formation of drug aggregates and dismantlement of hydrophilic biodegradable three-dimensional polymer networks. Facile surface chemistry is developed to functionalize polyimide-coated electrodes with the covalently anchored porous hydrogel network bearing large numbers of highly biodegradable ester groups. Exponential long-lasting drug release is achieved using such hydrogels. We show that the initial state of dexamethasone (Dex) used to formulate the hydrogel precursor solution plays a cardinal role in engineering hydrophilic networks that enable a sustained and long-lasting release of the anti-inflammatory agent. Furthermore, utilization of a high loading ratio that exceeds the solubility of Dex leads to the encapsulation of Dex aggregates that regulate the release of this anti-inflammatory agent. To validate the anti-inflammatory effect of the hydrogel-functionalized Dex-loaded microwires, an in vivo preliminary study was performed in adult male rats (n = 10) for the acute time points of 48 h and 7 days post implant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the mRNA expression of certain inflammatory-related genes. In general, a decrease in fold-change expression was observed for all genes tested for Dex-loaded wires compared with controls (functionalized but no drug). The engineering of hybrid microwires enables a sustained release of the anti-inflammatory agent over extended periods of time, thus paving the way to fabricate neuroprosthetic devices capable of attenuating the foreign body response.

5.
J Phys Chem B ; 123(51): 11026-11041, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31774281

RESUMO

The surface coverage and molecular composition of redox-active molecules anchored on conductive surfaces regulate the kinetic and thermodynamic parameters of charge transfer reactions, providing a means to tune the electrochemical properties of hybrid materials. Herein, anchoring strategies and structural properties of redox-active probes, derived from ferrocene (Fc) and naphthalene diimide (NDI), are shown to regulate the electrochemical properties of functionalized p-doped Si(111) surfaces. Covalent functionalization of hydrogen-terminated Si(111) surfaces with Fc and NDI affords redox-active hybrid interfaces characterized through microscopy, spectroscopy, and voltammetry methods. Molecular design and synthetic grafting strategies modulate the electrochemical properties of the Fc-functionalized Si surfaces with a much higher (ca. 25 times) surface coverage (1.25 × 10-10 mol cm-2) for one-step photografting compared to divergent synthetic routes. Interestingly, the thermal grafting of an alkadiyne followed by "click" reaction with ferrocenyl-azide leads to one of the highest surface coverages (9.97 × 10-10 mol cm-2) of organo-iron reported and a significant anodic shift of the half-potential (>350 mV) compared to photografting methods. Similar experiments with NDI units exhibited electrochemical properties that diverge from those recorded for NDI in solution. The results presented herein offer access to novel redox-active Si interfaces that evidence tunable electrochemical properties of potential interest for microelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA