Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 24(22): 3545-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24068323

RESUMO

Endoplasmic reticulum (ER) membrane-bound E3 ubiquitin ligases promote ER-associated degradation (ERAD) by ubiquitinating a retro-translocated substrate that reaches the cytosol from the ER, targeting it to the proteasome for destruction. Recent findings implicate ERAD-associated deubiquitinases (DUBs) as positive and negative regulators during ERAD, reflecting the different consequences of deubiquitinating a substrate prior to proteasomal degradation. These observations raise the question of whether a DUB can control the fate of a nonubiquitinated ERAD substrate. In this study, we probed the role of the ERAD-associated DUB, YOD1, during retro-translocation of the nonubiquitinated cholera toxin A1 (CTA1) peptide, a critical intoxication step. Through combining knockdown, overexpression, and binding studies, we demonstrated that YOD1 negatively controls CTA1 retro-translocation, likely by deubiquitinating and inactivating ubiquitinated ERAD components that normally promote toxin retro-translocation. YOD1 also antagonizes the proteasomal degradation of nonglycosylated pro-α factor, a postulated nonubiquitinated yeast ERAD substrate, in mammalian cells. Our findings reveal that a cytosolic DUB exerts a negative function during retro-translocation of nonubiquitinated substrates, potentially by acting on elements of the ERAD machinery.


Assuntos
Endopeptidases/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Tioléster Hidrolases/metabolismo , Ubiquitina/metabolismo , Toxina da Cólera/metabolismo , Citosol/metabolismo , Endopeptidases/genética , Retículo Endoplasmático/enzimologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico , Proteólise , Transdução de Sinais , Tioléster Hidrolases/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Antioxid Redox Signal ; 16(8): 809-18, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22142231

RESUMO

SIGNIFICANCE: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host-pathogen interactions. RECENT ADVANCES: Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. CRITICAL ISSUES: The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. FUTURE DIRECTIONS: How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions.


Assuntos
Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Proteólise , Animais , Toxinas Bacterianas/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Humanos , Chaperonas Moleculares/metabolismo , Oxirredução , Polyomaviridae/fisiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/fisiologia , Dobramento de Proteína , Transporte Proteico
3.
Mol Biol Cell ; 21(7): 1305-13, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20130085

RESUMO

Cholera toxin (CT) is transported from the plasma membrane of host cells to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit retro-translocates to the cytosol to induce toxicity. Our previous analyses demonstrated that the ER oxidoreductase protein disulfide isomerase (PDI) acts as a redox-dependent chaperone to unfold CTA1, a reaction postulated to initiate toxin retro-translocation. In its reduced state, PDI binds and unfolds CTA1; subsequent oxidation of PDI by Ero1alpha enables toxin release. Whether this in vitro model describes events in cells that control CTA1 retro-translocation is unknown. Here we show that down-regulation of Ero1alpha decreases retro-translocation of CTA1 by increasing reduced PDI and blocking efficient toxin release. Overexpression of Ero1alpha also attenuates CTA1 retro-translocation, an effect due to increased PDI oxidation, which prevents PDI from engaging the toxin effectively. Interestingly, Ero1alpha down-regulation increases interaction between PDI and Derlin-1, an ER membrane protein that is a component of the retro-translocation complex. These findings demonstrate that an appropriate Ero1alpha-PDI ratio is critical for regulating the binding-release cycle of CTA1 by PDI during retro-translocation, and implicate PDI's redox state in targeting it to the retro-translocon.


Assuntos
Toxina da Cólera/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Processamento Alternativo , Domínio Catalítico , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Retículo Endoplasmático/metabolismo , Humanos , Modelos Biológicos , Mutagênese , Oxirredução , Oxigênio/química , Isoformas de Proteínas , Transporte Proteico
4.
Mol Biol Cell ; 21(1): 140-51, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19864457

RESUMO

To cause disease, cholera toxin (CT) is transported from the cell surface to the endoplasmic reticulum (ER) lumen where the catalytic CTA1 subunit retro-translocates to the cytosol to induce pathological water secretion. Two retro-translocon components are the Derlins and ER-associated multi-spanning E3 ubiquitin ligases including Hrd1 and gp78. We demonstrated previously that Derlin-1 facilitates CTA1 retro-translocation. However, as CTA1 is neither ubiquitinated on lysines nor at its N-terminus, the role of E3 ligases in toxin retro-translocation is unclear. Here, we show that expression of mutant Hrd1 and gp78 and a mutant E2-conjugating enzyme dedicated to retro-translocation (Ube2g2) decrease CTA1 retro-translocation. Hrd1 knockdown also attenuated toxin retro-translocation. Binding studies demonstrate that Hrd1 and gp78 interact with CT and protein disulfide isomerase, an ER chaperone that unfolds CTA1 to initiate translocation. Moreover, we find that the toxin's association with Hrd1 and gp78 is blocked by dominant-negative Derlin-1, suggesting that CT is targeted initially to Derlin-1 and then transferred to Hrd1 and gp78. These data demonstrate a role of the E3 ubiquitin ligases in CTA1 retro-translocation, implicate a sequence of events experienced by the toxin on the ER membrane, and raise the possibility that ubiquitination is involved in the transport process.


Assuntos
Toxina da Cólera/metabolismo , Proteínas de Choque Térmico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Chaperona BiP do Retículo Endoplasmático , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Mol Biol Cell ; 19(3): 877-84, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094046

RESUMO

Cholera toxin (CT) intoxicates cells by using its receptor-binding B subunit (CTB) to traffic from the plasma membrane to the endoplasmic reticulum (ER). In this compartment, the catalytic A1 subunit (CTA1) is unfolded by protein disulfide isomerase (PDI) and retro-translocated to the cytosol where it triggers a signaling cascade, leading to secretory diarrhea. How CT is targeted to the site of retro-translocation in the ER membrane to initiate translocation is unclear. Using a semipermeabilized-cell retro-translocation assay, we demonstrate that a dominant-negative Derlin-1-YFP fusion protein attenuates the ER-to-cytosol transport of CTA1. Derlin-1 interacts with CTB and the ER chaperone PDI as assessed by coimmunoprecipitation experiments. An in vitro membrane-binding assay showed that CTB stimulated the unfolded CTA1 chain to bind to the ER membrane. Moreover, intoxication of intact cells with CTB stabilized the degradation of a Derlin-1-dependent substrate, suggesting that CT uses the Derlin-1 pathway. These findings indicate that Derlin-1 facilitates the retro-translocation of CT. CTB may play a role in this process by targeting the holotoxin to Derlin-1, enabling the Derlin-1-bound PDI to unfold the A1 subunit and prepare it for transport.


Assuntos
Toxina da Cólera/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/química , Ligação Proteica , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA