Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385286

RESUMO

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Assuntos
Insuficiência de Múltiplos Órgãos , Tromboplastina , Animais , Camundongos , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Fator VIIa/metabolismo , Endopeptidases/metabolismo
2.
Anesthesiology ; 138(6): 611-623, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893015

RESUMO

BACKGROUND: Maintenance of ion homeostasis is essential for normal brain function. Inhalational anesthetics are known to act on various receptors, but their effects on ion homeostatic systems, such as sodium/potassium-adenosine triphosphatase (Na+/K+-ATPase), remain largely unexplored. Based on reports demonstrating global network activity and wakefulness modulation by interstitial ions, the hypothesis was that deep isoflurane anesthesia affects ion homeostasis and the key mechanism for clearing extracellular potassium, Na+/K+-ATPase. METHODS: Using ion-selective microelectrodes, this study assessed isoflurane-induced extracellular ion dynamics in cortical slices of male and female Wistar rats in the absence of synaptic activity, in the presence of two-pore-domain potassium channel antagonists, during seizures, and during spreading depolarizations. The specific isoflurane effects on Na+/K+-ATPase function were measured using a coupled enzyme assay and studied the relevance of the findings in vivo and in silico. RESULTS: Isoflurane concentrations clinically relevant for burst suppression anesthesia increased baseline extracellular potassium (mean ± SD, 3.0 ± 0.0 vs. 3.9 ± 0.5 mM; P < 0.001; n = 39) and lowered extracellular sodium (153.4 ± 0.8 vs. 145.2 ± 6.0 mM; P < 0.001; n = 28). Similar changes in extracellular potassium and extracellular sodium and a substantial drop in extracellular calcium (1.5 ± 0.0 vs. 1.2 ± 0.1 mM; P = 0.001; n = 16) during inhibition of synaptic activity and two-pore-domain potassium suggested a different underlying mechanism. After seizure-like events and spreading depolarization, isoflurane greatly slowed extracellular potassium clearance (63.4 ± 18.2 vs. 196.2 ± 82.4 s; P < 0.001; n = 14). Na+/K+-ATPase activity was markedly reduced after isoflurane exposure (greater than 25%), affecting specifically the α2/3 activity fraction. In vivo, isoflurane-induced burst suppression resulted in impaired extracellular potassium clearance and interstitial potassium accumulation. A computational biophysical model reproduced the observed effects on extracellular potassium and displayed intensified bursting when Na+/K+-ATPase activity was reduced by 35%. Finally, Na+/K+-ATPase inhibition with ouabain induced burst-like activity during light anesthesia in vivo. CONCLUSIONS: The results demonstrate cortical ion homeostasis perturbation and specific Na+/K+-ATPase impairment during deep isoflurane anesthesia. Slowed potassium clearance and extracellular accumulation might modulate cortical excitability during burst suppression generation, while prolonged Na+/K+-ATPase impairment could contribute to neuronal dysfunction after deep anesthesia.


Assuntos
Isoflurano , Ratos , Animais , Masculino , Feminino , Isoflurano/farmacologia , Ratos Wistar , Homeostase , Encéfalo , Convulsões , Potássio/farmacologia , Sódio , Adenosina Trifosfatases
3.
Circulation ; 144(24): 1926-1939, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34762513

RESUMO

BACKGROUND: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). RESULTS: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. CONCLUSIONS: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Hepatology ; 73(2): 795-810, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32286709

RESUMO

BACKGROUND AND AIMS: Zone-dependent differences in expression of metabolic enzymes along the portocentral axis of the acinus are a long-known feature of liver metabolism. A prominent example is the preferential localization of the enzyme, glutamine synthetase, in pericentral hepatocytes, where it converts potentially toxic ammonia to the valuable amino acid, glutamine. However, with the exception of a few key regulatory enzymes, a comprehensive and quantitative assessment of zonal differences in the abundance of metabolic enzymes and, much more important, an estimation of the associated functional differences between portal and central hepatocytes is missing thus far. APPROACH AND RESULTS: We addressed this problem by establishing a method for the separation of periportal and pericentral hepatocytes that yields sufficiently pure fractions of both cell populations. Quantitative shotgun proteomics identified hundreds of differentially expressed enzymes in the two cell populations. We used zone-specific proteomics data for scaling of the maximal activities to generate portal and central instantiations of a comprehensive kinetic model of central hepatic metabolism (Hepatokin1). CONCLUSIONS: The model simulations revealed significant portal-to-central differences in almost all metabolic pathways involving carbohydrates, fatty acids, amino acids, and detoxification.


Assuntos
Hepatócitos/enzimologia , Fígado/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Animais , Arginase/metabolismo , Metabolismo dos Carboidratos , Células Cultivadas , Ácidos Graxos , Glucoquinase/metabolismo , Glutaminase/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/citologia , Masculino , Camundongos , Modelos Animais , Cultura Primária de Células , Proteômica , Análise Espacial
5.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328453

RESUMO

During general anesthesia, alterations in neuronal metabolism may induce neurotoxicity and/or neuroprotection depending on the dose and type of the applied anesthetic. In this study, we investigate the effects of clinically relevant concentrations of sevoflurane (2% and 4%, i.e., 1 and 2 MAC) on different activity states in hippocampal slices of young Wistar rats. We combine electrophysiological recordings, partial tissue oxygen (ptiO2) measurements, and flavin adenine dinucleotide (FAD) imaging with computational modeling. Sevoflurane minimally decreased the cerebral metabolic rate of oxygen (CMRO2) while decreasing synaptic transmission in naive slices. During pharmacologically induced gamma oscillations, sevoflurane impaired network activity, thereby decreasing CMRO2. During stimulus-induced neuronal activation, sevoflurane decreased CMRO2 and excitability while basal metabolism remained constant. In this line, stimulus-induced FAD transients decreased without changes in basal mitochondrial redox state. Integration of experimental data and computer modeling revealed no evidence for a direct effect of sevoflurane on key enzymes of the citric acid cycle or oxidative phosphorylation. Clinically relevant concentrations of sevoflurane generated a decent decrease in energy metabolism, which was proportional to the present neuronal activity. Mitochondrial function remained intact under sevoflurane, suggesting a better metabolic profile than isoflurane or propofol.


Assuntos
Anestésicos Inalatórios , Isoflurano , Anestésicos Inalatórios/farmacologia , Animais , Metabolismo Energético , Flavina-Adenina Dinucleotídeo/metabolismo , Isoflurano/farmacologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar , Sevoflurano/farmacologia
6.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232372

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and is associated with overweight and insulin resistance (IR). Almost nothing is known about in vivo alterations of liver metabolism in NAFLD, especially in the early stages of non-alcoholic steatohepatitis (NASH). Here, we used a complex mathematical model of liver metabolism to quantify the central hepatic metabolic functions of 71 children with biopsy-proven NAFLD. For each patient, a personalized model variant was generated based on enzyme abundances determined by mass spectroscopy. Our analysis revealed statistically significant alterations in the hepatic carbohydrate, lipid, and ammonia metabolism, which increased with the degree of obesity and severity of NAFLD. Histologic features of NASH and IR displayed opposing associations with changes in carbohydrate and lipid metabolism but synergistically decreased urea synthesis in favor of the increased release of glutamine, a driver of liver fibrosis. Taken together, our study reveals already significant alterations in the NASH liver of pediatric patients, which, however, are differently modulated by the simultaneous presence of IR.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Amônia , Carboidratos , Criança , Glutamina , Humanos , Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prevalência , Ureia
7.
Br J Cancer ; 122(2): 233-244, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819186

RESUMO

BACKGROUND: Metabolic alterations can serve as targets for diagnosis and cancer therapy. Due to the highly complex regulation of cellular metabolism, definite identification of metabolic pathway alterations remains challenging and requires sophisticated experimentation. METHODS: We applied a comprehensive kinetic model of the central carbon metabolism (CCM) to characterise metabolic reprogramming in murine liver cancer. RESULTS: We show that relative differences of protein abundances of metabolic enzymes obtained by mass spectrometry can be used to assess their maximal velocity values. Model simulations predicted tumour-specific alterations of various components of the CCM, a selected number of which were subsequently verified by in vitro and in vivo experiments. Furthermore, we demonstrate the ability of the kinetic model to identify metabolic pathways whose inhibition results in selective tumour cell killing. CONCLUSIONS: Our systems biology approach establishes that combining cellular experimentation with computer simulations of physiology-based metabolic models enables a comprehensive understanding of deregulated energetics in cancer. We propose that modelling proteomics data from human HCC with our approach will enable an individualised metabolic profiling of tumours and predictions of the efficacy of drug therapies targeting specific metabolic pathways.


Assuntos
Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas/genética , Proteoma/genética , Animais , Reprogramação Celular/genética , Simulação por Computador , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteoma/metabolismo
8.
J Cell Sci ; 131(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420298

RESUMO

Alternative models explaining the biliary lipid secretion at the canalicular membrane of hepatocytes exist: successive lipid extraction by preformed bile salt micelles, or budding of membrane fragments with formation of mixed micelles. To test the feasibility of the latter mechanism, we developed a mathematical model that describes the formation of lipid microdomains in the canalicular membrane. Bile salt monomers intercalate into the external hemileaflet of the canalicular membrane, to form a rim to liquid disordered domain patches that then pinch off to form nanometer-scale mixed micelles. Model simulations perfectly recapitulate the measured dependence of bile salt-dependent biliary lipid extraction rates upon modulation of the membrane cholesterol (lack or overexpression of the cholesterol transporter Abcg5-Abcg8) and phosphatidylcholine (lack of Mdr2, also known as Abcb4) content. The model reveals a strong dependence of the biliary secretion rate on the protein density of the membrane. Taken together, the proposed model is consistent with crucial experimental findings in the field and provides a consistent explanation of the central molecular processes involved in bile formation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Sistema Biliar/metabolismo , Lipídeos/genética , Modelos Teóricos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Canalículos Biliares/crescimento & desenvolvimento , Canalículos Biliares/metabolismo , Sistema Biliar/crescimento & desenvolvimento , Colesterol/metabolismo , Hepatócitos/metabolismo , Lipídeos/biossíntese , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Camundongos , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
9.
Arch Toxicol ; 94(2): 401-415, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32020249

RESUMO

The principle of dynamic liver function breath tests is founded on the administration of a 13C-labeled drug and subsequent monitoring of 13CO2 in the breath, quantified as time series delta over natural baseline 13CO2 (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated 13CO2 is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic 13CO2 distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test. We designed a new test variant (named "2DOB") consisting of two consecutive phases. Phase 1 is initiated by the intravenous administration of 13C-bicarbonate. Phase 2 starts about 30 min later with the intravenous administration of the 13C-labelled test drug. Using compartment modelling, the resulting 2-phasic DOB curve yields the rate constants for the irreversible elimination and the reversible exchange of plasma 13CO2 with body compartments (phase 1) and for the detoxification and exchange of the drug with body compartments (phase 2). We carried out the 2DOB test with the test drug 13C-methacetin in 16 subjects with chronic liver pathologies and 22 normal subjects, who also underwent the conventional LiMAx test. Individual differences in the systemic CO2 kinetics can lead to deviations up to a factor of 2 in the maximum of DOB curves (coefficient of variation CV ≈ 0.2) which, in particular, may hamper the discrimination between subjects with normal or mildly impaired detoxification capacities. The novel test revealed that a significant portion of the drug is not immediately metabolized, but transiently taken up into a storage compartment. Intriguingly, not only the hepatic detoxification rate but also the storage capacity of the drug, turned out to be indicative for a normal liver function. We thus used both parameters to define a scoring function which yielded an excellent disease classification (AUC = 0.95) and a high correlation with the MELD score (RSpearman = 0.92). The novel test variant 2DOB promises a significant improvement in the assessment of impaired hepatic detoxification capacity. The suitability of the test for the reliable characterization of the natural history of chronic liver diseases (fatty liver-fibrosis-cirrhosis) has to be assessed in further studies.


Assuntos
Testes Respiratórios/métodos , Dióxido de Carbono/metabolismo , Hepatopatias/fisiopatologia , Testes de Função Hepática/métodos , Acetamidas/administração & dosagem , Acetamidas/sangue , Acetaminofen/sangue , Administração Oral , Adulto , Fatores Etários , Isótopos de Carbono/análise , Isótopos de Carbono/sangue , Estudos de Casos e Controles , Monitoramento de Medicamentos , Feminino , Humanos , Hepatopatias/diagnóstico , Masculino , Pessoa de Meia-Idade , Modelos Biológicos
10.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492921

RESUMO

Multimodal continuous bedside monitoring is increasingly recognized as a promising option for early treatment stratification in patients at risk for ischemia during neurocritical care. Modalities used at present are, for example, oxygen availability and subdural electrocorticography. The assessment of mitochondrial function could be an interesting complement to these modalities. For instance, flavin adenine dinucleotide (FAD) fluorescence permits direct insight into the mitochondrial redox state. Therefore, we explored the possibility of using FAD fluorometry to monitor consequences of hypoxia in brain tissue in vitro and in vivo. By combining experimental results with computational modeling, we identified the potential source responsible for the fluorescence signal and gained insight into the hypoxia-associated metabolic changes in neuronal energy metabolism. In vitro, hypoxia was characterized by a reductive shift of FAD, impairment of synaptic transmission and increasing interstitial potassium [K+]o. Computer simulations predicted FAD changes to originate from the citric acid cycle enzyme α-ketoglutarate dehydrogenase and pyruvate dehydrogenase. In vivo, the FAD signal during early hypoxia displayed a reductive shift followed by a short oxidation associated with terminal spreading depolarization. In silico, initial tissue hypoxia followed by a transient re-oxygenation phase due to glucose depletion might explain FAD dynamics in vivo. Our work suggests that FAD fluorescence could be readily used to monitor mitochondrial function during hypoxia and represents a potential diagnostic tool to differentiate underlying metabolic processes for complementation of multimodal brain monitoring.


Assuntos
Encéfalo/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Hipóxia Encefálica/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/fisiopatologia , Ciclo do Ácido Cítrico , Simulação por Computador , Metabolismo Energético , Fluorometria , Hipóxia Encefálica/patologia , Masculino , Mitocôndrias/patologia , Oxirredução , Oxigênio/metabolismo , Potássio/metabolismo , Ratos , Ratos Wistar
11.
Anesthesiology ; 140(3): 635-636, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157419
12.
Liver Int ; 39(3): 540-556, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444569

RESUMO

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents today. In comparison with adult disease, paediatric NAFLD may show a periportal localization, which is associated with advanced fibrosis. This study aimed to assess the role of genetic risk variants for histological disease pattern and severity in childhood NAFLD. METHODS: We studied 14 single nucleotide polymorphisms (SNP) in a cohort of 70 adolescents with biopsy-proven NAFLD. Genotype was compared to an adult control cohort (n = 200) and analysed in relation to histological disease severity and liver tissue proteomics. RESULTS: Three of the 14 SNPs were significantly associated with paediatric NAFLD after FDR adjustment, rs738409 (PNPLA3, P = 2.80 × 10-06 ), rs1044498 (ENPP1, P = 0.0091) and rs780094 (GCKR, P = 0.0281). The severity of steatosis was critically associated with rs738409 (OR=3.25; 95% CI: 1.72-6.52, FDR-adjusted P = 0.0070). The strongest variants associated with severity of fibrosis were rs1260326, rs780094 (both GCKR) and rs659366 (UCP2). PNPLA3 was associated with a portal pattern of steatosis, inflammation and fibrosis. Proteome profiling revealed decreasing levels of GCKR protein with increasing carriage of the rs1260326/rs780094 minor alleles and downregulation of the retinol pathway in rs738409 G/G carriers. Computational metabolic modelling highlighted functional relevance of PNPLA3, GCKR and UCP2 for NAFLD development. CONCLUSIONS: This study provides evidence for the role of PNPLA3 as a determinant of portal NAFLD localization and severity of portal fibrosis in children and adolescents, the risk variant being associated with an impaired hepatic retinol metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lipase/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Proteína Desacopladora 1/genética , Adolescente , Fatores Etários , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Predisposição Genética para Doença , Humanos , Fígado/enzimologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/enzimologia , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Fenótipo , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Vitamina A/metabolismo
13.
PLoS Comput Biol ; 14(2): e1006005, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447152

RESUMO

The capacity of the liver to convert the metabolic input received from the incoming portal and arterial blood into the metabolic output of the outgoing venous blood has three major determinants: The intra-hepatic blood flow, the transport of metabolites between blood vessels (sinusoids) and hepatocytes and the metabolic capacity of hepatocytes. These determinants are not constant across the organ: Even in the normal organ, but much more pronounced in the fibrotic and cirrhotic liver, regional variability of the capillary blood pressure, tissue architecture and the expression level of metabolic enzymes (zonation) have been reported. Understanding how this variability may affect the regional metabolic capacity of the liver is important for the interpretation of functional liver tests and planning of pharmacological and surgical interventions. Here we present a mathematical model of the sinusoidal tissue unit (STU) that is composed of a single sinusoid surrounded by the space of Disse and a monolayer of hepatocytes. The total metabolic output of the liver (arterio-venous glucose difference) is obtained by integration across the metabolic output of a representative number of STUs. Application of the model to the hepatic glucose metabolism provided the following insights: (i) At portal glucose concentrations between 6-8 mM, an intra-sinusoidal glucose cycle may occur which is constituted by glucose producing periportal hepatocytes and glucose consuming pericentral hepatocytes, (ii) Regional variability of hepatic blood flow is higher than the corresponding regional variability of the metabolic output, (iii) a spatially resolved metabolic functiogram of the liver is constructed. Variations of tissue parameters are equally important as variations of enzyme activities for the control of the arterio-venous glucose difference.


Assuntos
Metabolismo dos Carboidratos , Fígado/metabolismo , Perfusão , Animais , Fenômenos Bioquímicos , Velocidade do Fluxo Sanguíneo , Glicemia/metabolismo , Pressão Sanguínea , Cães , Fibrose/patologia , Glucose/metabolismo , Glicogênio/metabolismo , Hepatócitos/citologia , Humanos , Cinética , Cirrose Hepática/patologia , Camundongos , Microcirculação , Modelos Teóricos , Ratos , Tomografia Computadorizada por Raios X
14.
Arch Toxicol ; 92(10): 3191-3205, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143847

RESUMO

Propofol is the most frequently used intravenous anesthetic for induction and maintenance of anesthesia. Propofol acts first and formost as a GABAA-agonist, but effects on other neuronal receptors and voltage-gated ion channels have been described. Besides its direct effect on neurotransmission, propofol-dependent impairment of mitochondrial function in neurons has been suggested to be responsible for neurotoxicity and postoperative brain dysfunction. To clarify the potential neurotoxic effect in more detail, we investigated the effects of propofol on neuronal energy metabolism of hippocampal slices of the stratum pyramidale of area CA3 at different activity states. We combined oxygen-measurements, electrophysiology and flavin adenine dinucleotide (FAD)-imaging with computational modeling to uncover molecular targets in mitochondrial energy metabolism that are directly inhibited by propofol. We found that high concentrations of propofol (100 µM) significantly decrease population spikes, paired pulse ratio, the cerebral metabolic rate of oxygen consumption (CMRO2), frequency and power of gamma oscillations and increase FAD-oxidation. Model-based simulation of mitochondrial FAD redox state at inhibition of different respiratory chain (RC) complexes and the pyruvate-dehydrogenase show that the alterations in FAD-autofluorescence during propofol administration can be explained with a strong direct inhibition of the complex II (cxII) of the RC. While this inhibition may not affect ATP availability under normal conditions, it may have an impact at high energy demand. Our data support the notion that propofol may lead to neurotoxicity and neuronal dysfunction by directly affecting the energy metabolism in neurons.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Síndromes Neurotóxicas/etiologia , Propofol/efeitos adversos , Trifosfato de Adenosina/metabolismo , Anestésicos Intravenosos/efeitos adversos , Animais , Região CA3 Hipocampal/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Técnicas de Cultura de Órgãos , Consumo de Oxigênio/efeitos dos fármacos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos
15.
BMC Biol ; 14: 15, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26935066

RESUMO

BACKGROUND: Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. RESULTS: Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. CONCLUSION: In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos , Simulação por Computador , Glucagon/sangue , Glucagon/metabolismo , Glicogênio/metabolismo , Hepatócitos/enzimologia , Homeostase , Insulina/sangue , Insulina/metabolismo , Cinética , Fígado/enzimologia , Modelos Biológicos , Ratos
16.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880249

RESUMO

Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.


Assuntos
Potenciais de Ação/fisiologia , Consumo de Oxigênio/fisiologia , Convulsões/metabolismo , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Antracenos/farmacologia , Bicuculina/farmacologia , Eletrofisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
17.
PLoS Comput Biol ; 11(2): e1004033, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25692493

RESUMO

The bile fluid contains various lipids that are secreted at the canalicular membrane of hepatocytes. As the secretion mechanism is still a matter of debate and a direct experimental observation of the secretion process is not possible so far, we used a mathematical model to simulate the extraction of the major bile lipids cholesterol, phosphatidylcholine and sphingomyelin from the outer leaflet of the canalicular membrane. Lipid diffusion was modeled as random movement on a triangular lattice governed by next-neighbor interaction energies. Phase separation in liquid-ordered and liquid-disordered domains was modeled by assigning two alternative ordering states to each lipid species and minimization of next-neighbor ordering energies. Parameterization of the model was performed such that experimentally determined diffusion rates and phases in ternary lipid mixtures of model membranes were correctly recapitulated. The model describes the spontaneous formation of nanodomains in the external leaflet of the canalicular membrane in a time window between 0.1 ms to 10 ms at varying lipid proportions. The extraction of lipid patches from the bile salt soluble nanodomain into the bile reproduced observed biliary phospholipid compositions for a physiological membrane composition. Comparing the outcome of model simulations with available experimental observations clearly favors the extraction of tiny membrane patches composed of about 100-400 lipids as the likely mechanism of biliary lipid secretion.


Assuntos
Bile/química , Membrana Celular/química , Membrana Celular/metabolismo , Hepatócitos/citologia , Lipídeos de Membrana/química , Modelos Biológicos , Animais , Bile/metabolismo , Membrana Celular/ultraestrutura , Colesterol/química , Colesterol/metabolismo , Simulação por Computador , Humanos , Lipídeos de Membrana/metabolismo , Camundongos , Nanoestruturas , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo
18.
Recent Results Cancer Res ; 207: 221-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557541

RESUMO

Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.


Assuntos
Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Modelos Teóricos , Humanos
20.
Methods Mol Biol ; 2769: 211-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315400

RESUMO

Mathematical modeling is a promising strategy to fill the experimentally unapproachable knowledge gaps about the relative contribution of various molecular processes to cellular metabolic function. To this end, we developed detailed kinetic models of the central metabolism of different cell types, comprising multiple metabolic functionalities. We used the model to simulate metabolic changes in several cell types under different experimental settings in health and disease. In this way, we show that it is possible to decipher and characterize the relative influence of various metabolic pathways and enzymes to overall metabolic performance and phenotype.Quantitative Systems Metabolism (QSM™) allows quantitative assessment of metabolic functionality and metabolic profiling based on proteomic data. Here, we describe the technique, namely, molecular resolved kinetic modeling, underlying QSM™. We explain the necessary steps for the generation of cell-specific models to functionally interpret proteomic data and point out some unresolved challenges and open questions.


Assuntos
Modelos Biológicos , Proteômica , Simulação por Computador , Redes e Vias Metabólicas , Fenômenos Fisiológicos Celulares , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA