Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Nature ; 620(7974): 525-532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587297

RESUMO

Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating1, unconventional superconducting2-5 and magnetic topological6-9 phases. The lack of microscopic information10,11 of possible broken symmetries has hampered our understanding of these phases12-17. Here we use high-resolution scanning tunnelling microscopy to study the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulating, pseudogap and superconducting phases, show distinct broken-symmetry patterns with a √3 × âˆš3 super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moiré scale. We introduce a symmetry-based analysis using a set of complex-valued local order parameters, which show intricate textures that distinguish the various correlated phases. We compare the observed quantum textures of the correlated insulators at fillings of ±2 electrons per moiré unit cell to those expected for proposed theoretical ground states. In typical MATBG devices, these textures closely match those of the proposed incommensurate Kekulé spiral order15, whereas in ultralow-strain samples, our data have local symmetries like those of a time-reversal symmetric intervalley coherent phase12. Moreover, the superconducting state of MATBG shows strong signatures of intervalley coherence, only distinguishable from those of the insulator with our phase-sensitive measurements.

2.
Nature ; 603(7899): 41-51, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35236973

RESUMO

Magnetic topological materials represent a class of compounds with properties that are strongly influenced by the topology of their electronic wavefunctions coupled with the magnetic spin configuration. Such materials can support chiral electronic channels of perfect conduction, and can be used for an array of applications, from information storage and control to dissipationless spin and charge transport. Here we review the theoretical and experimental progress achieved in the field of magnetic topological materials, beginning with the theoretical prediction of the quantum anomalous Hall effect without Landau levels, and leading to the recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. We outline recent theoretical progress that has resulted in the tabulation of, for the first time, all magnetic symmetry group representations and topology. We describe several experiments realizing Chern insulators, Weyl and Dirac magnetic semimetals, and an array of axionic and higher-order topological phases of matter, and we survey future perspectives.

3.
Nature ; 603(7903): 824-828, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35355002

RESUMO

Topological electronic flattened bands near or at the Fermi level are a promising route towards unconventional superconductivity and correlated insulating states. However, the related experiments are mostly limited to engineered materials, such as moiré systems1-3. Here we present a catalogue of the naturally occuring three-dimensional stoichiometric materials with flat bands around the Fermi level. We consider 55,206 materials from the Inorganic Crystal Structure Database catalogued using the Topological Quantum Chemistry website4,5, which provides their structural parameters, space group, band structure, density of states and topological characterization. We combine several direct signatures and properties of band flatness with a high-throughput analysis of all crystal structures. In particular, we identify materials hosting line-graph or bipartite sublattices-in either two or three dimensions-that probably lead to flat bands. From this trove of information, we create the Materials Flatband Database website, a powerful search engine for future theoretical and experimental studies. We use the database to extract a curated list of 2,379 high-quality flat-band materials, from which we identify 345 promising candidates that potentially host flat bands with charge centres that are not strongly localized on the atomic sites. We showcase five representative materials and provide a theoretical explanation for the origin of their flat bands close to the Fermi energy using the S-matrix method introduced in a parallel work6.

4.
Nature ; 582(7812): E13, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32461696

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 588(7839): 610-615, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33318688

RESUMO

Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases2-9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role9. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.

6.
Nature ; 582(7812): E14, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32472016

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nature ; 586(7831): 702-707, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116291

RESUMO

The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators1-3, have directed fundamental research in solid-state materials. Topological quantum chemistry4 has enabled the understanding of and the search for paramagnetic topological materials5,6. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC)7, here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.

8.
Nature ; 582(7811): 198-202, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528095

RESUMO

Magic-angle twisted bilayer graphene exhibits a variety of electronic states, including correlated insulators1-3, superconductors2-4 and topological phases3,5,6. Understanding the microscopic mechanisms responsible for these phases requires determination of the interplay between electron-electron interactions and quantum degeneracy (the latter is due to spin and valley degrees of freedom). Signatures of strong electron-electron correlations have been observed at partial fillings of the flat electronic bands in recent spectroscopic measurements7-10, and transport experiments have shown changes in the Landau level degeneracy at fillings corresponding to an integer number of electrons per moiré unit cell2-4. However, the interplay between interaction effects and the degeneracy of the system is currently unclear. Here we report a cascade of transitions in the spectroscopic properties of magic-angle twisted bilayer graphene as a function of electron filling, determined using high-resolution scanning tunnelling microscopy. We find distinct changes in the chemical potential and a rearrangement of the low-energy excitations at each integer filling of the moiré flat bands. These spectroscopic features are a direct consequence of Coulomb interactions, which split the degenerate flat bands into Hubbard sub-bands. We find these interactions, the strength of which we can extract experimentally, to be surprisingly sensitive to the presence of a perpendicular magnetic field, which strongly modifies the spectroscopic transitions. The cascade of transitions that we report here characterizes the correlated high-temperature parent phase11,12 from which various insulating and superconducting ground-state phases emerge at low temperatures in magic-angle twisted bilayer graphene.

9.
Proc Natl Acad Sci U S A ; 120(8): e2218997120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787357

RESUMO

Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 ≤ x ≤ 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.

10.
Nature ; 566(7745): 480-485, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30814710

RESUMO

Using a recently developed formalism called topological quantum chemistry, we perform a high-throughput search of 'high-quality' materials (for which the atomic positions and structure have been measured very accurately) in the Inorganic Crystal Structure Database in order to identify new topological phases. We develop codes to compute all characters of all symmetries of 26,938 stoichiometric materials, and find 3,307 topological insulators, 4,078 topological semimetals and no fragile phases. For these 7,385 materials we provide the electronic band structure, including some electronic properties (bandgap and number of electrons), symmetry indicators, and other topological information. Our results show that more than 27 per cent of all materials in nature are topological. We provide an open-source code that checks the topology of any material and allows other researchers to reproduce our results.

11.
Nature ; 572(7767): 101-105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367031

RESUMO

The discovery of superconducting and insulating states in magic-angle twisted bilayer graphene (MATBG)1,2 has ignited considerable interest in understanding the nature of electronic interactions in this chemically pristine material. The transport properties of MATBG as a function of doping are similar to those of high-transition-temperature copper oxides and other unconventional superconductors1-3, which suggests that MATBG may be a highly interacting system. However, to our knowledge, there is no direct experimental evidence of strong many-body correlations in MATBG. Here we present high-resolution spectroscopic measurements, obtained using a scanning tunnelling microscope, that provide such evidence as a function of carrier density. MATBG displays unusual spectroscopic characteristics that can be attributed to electron-electron interactions over a wide range of doping levels, including those at which superconductivity emerges in this system. We show that our measurements cannot be explained with a mean-field approach for modelling electron-electron interactions in MATBG. The breakdown of a mean-field approach when applied to other correlated superconductors, such as copper oxides, has long inspired the study of the highly correlated Hubbard model3. We show that a phenomenological extended-Hubbard-model cluster calculation, which is motivated by the nearly localized nature of the relevant electronic states of MATBG, produces spectroscopic features that are similar to those that we observed experimentally. Our findings demonstrate the critical role of many-body correlations in understanding the properties of MATBG.

12.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301893

RESUMO

Moiré superlattices in two-dimensional van der Waals heterostructures provide an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has made this moiré system one of the most renowned condensed matter platforms. So far studies of tBLG have been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 ∼ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θm2 ∼ 0.5°, which cannot be explained without considering electron-election interactions. With high magnetic field magnetotransport measurements we further reveal an energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band gaps. The connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.

13.
Phys Rev Lett ; 131(2): 026502, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505959

RESUMO

We apply a generalized Schrieffer-Wolff transformation to the extended Anderson-like topological heavy fermion (THF) model for the magic-angle (θ=1.05°) twisted bilayer graphene (MATBLG) [Phys. Rev. Lett. 129, 047601 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.047601], to obtain its Kondo lattice limit. In this limit localized f electrons on a triangular lattice interact with topological conduction c electrons. By solving the exact limit of the THF model, we show that the integer fillings ν=0,±1,±2 are controlled by the heavy f electrons, while ν=±3 is at the border of a phase transition between two f-electron fillings. For ν=0,±1,±2, we then calculate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the f moments in the full model and analytically prove the SU(4) Hund's rule for the ground state which maintains that two f electrons fill the same valley-spin flavor. Our (ferromagnetic interactions in the) spin model dramatically differ from the usual Heisenberg antiferromagnetic interactions expected at strong coupling. We show the ground state in some limits can be found exactly by employing a positive semidefinite "bond-operators" method. We then compute the excitation spectrum of the f moments in the ordered ground state, prove the stability of the ground state favored by RKKY interactions, and discuss the properties of the Goldstone modes, the (reason for the accidental) degeneracy of (some of) the excitation modes, and the physics of their phase stiffness. We develop a low-energy effective theory for the f moments and obtain analytic expressions for the dispersion of the collective modes. We discuss the relevance of our results to the spin-entropy experiments in TBG.

14.
Phys Rev Lett ; 130(23): 236601, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354423

RESUMO

Adding magnetic flux to a band structure breaks Bloch's theorem by realizing a projective representation of the translation group. The resulting Hofstadter spectrum encodes the nonperturbative response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator). In this Letter, we present a real space classification of these Hofstadter phases. We give topological indices in terms of symmetry-protected real space invariants, which reveal the bulk and boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity in tight-binding models causes the symmetries which are broken by the magnetic field to reenter at strong flux where they form projective point group representations. We completely classify the reentrant projective point groups and find that the Schur multipliers which define them are Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology.

15.
Phys Rev Lett ; 131(16): 166501, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925696

RESUMO

We use the topological heavy fermion (THF) model and its Kondo lattice (KL) formulation to study the possibility of a symmetric Kondo (SK) state in twisted bilayer graphene. Via a large-N approximation, we find a SK state in the KL model at fillings ν=0,±1,±2 where a KL model can be constructed. In the SK state, all symmetries are preserved and the local moments are Kondo screened by the conduction electrons. At the mean-field level of the THF model at ν=0,±1,±2,±3 we also find a similar symmetric state that is adiabatically connected to the symmetric Kondo state. We study the stability of the symmetric state by comparing its energy with the ordered (symmetry-breaking) states found in [H. Hu et al., Phys. Rev. Lett. 131, 026502 (2023).PRLTAO0031-900710.1103/PhysRevLett.131.026502, Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601 (2022).PRLTAO0031-900710.1103/PhysRevLett.129.047601] and find the ordered states to have lower energy at ν=0,±1,±2. However, moving away from integer fillings by doping the light bands, our mean-field calculations find the energy difference between the ordered state and the symmetric state to be reduced, which suggests the loss of ordering and a tendency toward Kondo screening. In order to include many-body effects beyond the mean-field approximation, we also performed dynamical mean-field theory calculations on the THF model in the nonordered phase. The spin susceptibility follows a Curie behavior at ν=0,±1,±2 down to ∼2 K where the onset of screening of the local moment becomes visible. This hints to very low Kondo temperatures at these fillings, in agreement with the outcome of our mean-field calculations. At noninteger filling ν=±0.5,±0.8,±1.2 dynamical mean-field theory shows deviations from a 1/T susceptibility at much higher temperatures, suggesting a more effective screening of local moments with doping. Finally, we study the effect of a C_{3z}-rotational-symmetry-breaking strain via mean-field approaches and find that a symmetric phase (that only breaks C_{3z} symmetry) can be stabilized at sufficiently large strain at ν=0,±1,±2. Our results suggest that a symmetric Kondo phase is strongly suppressed at integer fillings, but could be stabilized either at noninteger fillings or by applying strain.

16.
Nature ; 547(7663): 298-305, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726818

RESUMO

Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.

18.
Rep Prog Phys ; 85(8)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617909

RESUMO

The discovery of quantum many-body scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert space fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.

19.
Phys Rev Lett ; 129(4): 047601, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939005

RESUMO

Magic-angle (θ=1.05°) twisted bilayer graphene (MATBG) has shown two seemingly contradictory characters: the localization and quantum-dot-like behavior in STM experiments, and delocalization in transport experiments. We construct a model, which naturally captures the two aspects, from the Bistritzer-MacDonald (BM) model in a first principle spirit. A set of local flat-band orbitals (f) centered at the AA-stacking regions are responsible to the localization. A set of extended topological semimetallic conduction bands (c), which are at small energetic separation from the local orbitals, are responsible to the delocalization and transport. The topological flat bands of the BM model appear as a result of the hybridization of f and c electrons. This model then provides a new perspective for the strong correlation physics, which is now described as strongly correlated f electrons coupled to nearly free c electrons-we hence name our model as the topological heavy fermion model. Using this model, we obtain the U(4) and U(4)×U(4) symmetries of Refs. [1-5] as well as the correlated insulator phases and their energies. Simple rules for the ground states and their Chern numbers are derived. Moreover, features such as the large dispersion of the charge ±1 excitations [2,6,7], and the minima of the charge gap at the Γ_{M} point can now, for the first time, be understood both qualitatively and quantitatively in a simple physical picture. Our mapping opens the prospect of using heavy-fermion physics machinery to the superconducting physics of MATBG.

20.
Phys Rev Lett ; 128(8): 087002, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275691

RESUMO

Flat-band superconductivity has theoretically demonstrated the importance of band topology to correlated phases. In two dimensions, the superfluid weight, which determines the critical temperature through the Berezinksii-Kosterlitz-Thouless criteria, is bounded by the Fubini-Study metric at zero temperature. We show this bound is nonzero within flat bands whose Wannier centers are obstructed from the atoms-even when they have identically zero Berry curvature. Next, we derive general lower bounds for the superfluid weight in terms of momentum space irreps in all 2D space groups, extending the reach of topological quantum chemistry to superconducting states. We find that the bounds can be naturally expressed using the formalism of real space invariants (RSIs) that highlight the separation between electronic and atomic degrees of freedom. Finally, using exact Monte Carlo simulations on a model with perfectly flat bands and strictly local obstructed Wannier functions, we find that an attractive Hubbard interaction results in superconductivity as predicted by the RSI bound beyond mean field. Hence, obstructed bands are distinguished from trivial bands in the presence of interactions by the nonzero lower bound imposed on their superfluid weight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA