Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(16): 24592-24605, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614812

RESUMO

Frequency dissemination in phase-stabilized optical fiber networks for metrological frequency comparisons and precision measurements are promising candidates to overcome the limitations imposed by satellite techniques. However, in an architecture shared with telecommunication data traffic, network constraints restrict the availability of dedicated channels in the commonly-used C-band. Here, we demonstrate the dissemination of an SI-traceable ultrastable optical frequency in the L-band over a 456 km fiber network with ring topology, in which data traffic occupies the full C-band. We characterize the optical phase noise and evaluate a link instability of 4.7 × 10-16 at 1 s and 3.8 × 10-19 at 2000 s integration time, and a link accuracy of 2 × 10-18. We demonstrate the application of the disseminated frequency by establishing the SI-traceability of a laser in a remote laboratory. Finally, we show that our metrological frequency does not interfere with data traffic in the telecommunication channels. Our approach combines an unconventional spectral choice in the telecommunication L-band with established frequency-stabilization techniques, providing a novel, cost-effective solution for ultrastable frequency-comparison and dissemination, and may contribute to a foundation of a world-wide metrological network.

2.
Artigo em Inglês | MEDLINE | ID: mdl-16889332

RESUMO

We address two issues that limit the quality of time and frequency transfer by carrier phase measurements from the Global Positioning System (GPS). The first issue is related to inconsistencies between code and phase observations. We describe and classify several types of events that can cause inconsistencies and observe that some of them are related to the internal clock of the GPS receiver. Strategies to detect and overcome time-code inconsistencies have been developed and implemented into the Bernese GPS Software package. For the moment, only inconsistencies larger than the 20 ns code measurement noise level can be detected automatically. The second issue is related to discontinuities at the day boundaries that stem from the processing of the data in daily batches. Two new methods are discussed: clock handover and ambiguity stacking. The two approaches are tested on data obtained from a network of stations, and the results are compared with an independent time-transfer method. Both methods improve the stability of the transfer for short averaging times, but there is no benefit for averaging times longer than 8 days. We show that continuous solutions are sufficiently robust against modeling and preprocessing errors to prevent the solution from accumulating a permanent bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA