Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Glob Chang Biol ; 29(14): 3924-3940, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165918

RESUMO

Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.


Assuntos
Secas , Ecossistema , Estações do Ano , Florestas , Aquecimento Global , Mudança Climática , Árvores
2.
Glob Chang Biol ; 28(20): 6021-6032, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35901248

RESUMO

Climate warming has significantly altered the phenology of plants in recent decades. However, in contrast to the widely reported warming-induced extension of vegetative growing season, the response of fruit development period (FDP) from flowering to fruiting remains largely unexplored, particularly for woody plants. Analyzing >560,000 in situ observations of both flowering and fruiting dates for six temperate woody species across 2958 European phenological observations sites during 1980-2013, we found that in all species both flowering and fruiting phenology, that is, the FDP, advanced with climate warming. However, the advancing rates of the two events were not necessarily equal for any given species, resulting in divergent changes in the length of FDP among species with climate warming. During 1980-2013, not only the temperature during FDP but also the forcing requirement for fruit development increased, both affecting the length of FDP. The shortened FDP was mainly due to elevated temperature, thus accelerating the accumulation of forcing, whereas the prolonged FDP was primarily caused by the substantial increase of the forcing requirement of fruiting, which could be fulfilled only in a longer time and thus slowed down the advance of fruiting. This study provides large-scale empirical evidence of warming-induced advances of FDP but divergent changes in its length in temperate woody species. Our findings demonstrate the contrasting reproductive phenological strategies among temperate woody species under the pressure of warming climate, contrary to the lengthening of vegetative growing season, which is by and largely similar with different woody species.


Assuntos
Clima , Frutas , Mudança Climática , Flores , Plantas , Reprodução , Estações do Ano , Temperatura
3.
Glob Chang Biol ; 28(8): 2764-2778, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35060250

RESUMO

The past decades have witnessed an increase in dissolved organic carbon (DOC) concentrations in the catchments of the Northern Hemisphere. Increasing terrestrial productivity and changing hydrology may be reasons for the increases in DOC concentration. The aim of this study is to investigate the impacts of increased terrestrial productivity and changed hydrology following climate change on DOC concentrations. We tested and quantified the effects of gross primary production (GPP), ecosystem respiration (RE) and discharge on DOC concentrations in boreal catchments over 3 years. As catchment characteristics can regulate the extent of rising DOC concentrations caused by the regional or global environmental changes, we selected four catchments with different sizes (small, medium and large) and landscapes (forest, mire and forest-mire mixed). We applied multiple models: Wavelet coherence analysis detected the delay-effects of terrestrial productivity and discharge on aquatic DOC variations of boreal catchments; thereafter, the distributed-lag linear models quantified the contributions of each factor on DOC variations. Our results showed that the combined impacts of terrestrial productivity and discharge explained 62% of aquatic DOC variations on average across all sites, whereas discharge, gross primary production (GPP) and RE accounted for 26%, 22% and 3%, respectively. The impact of GPP and discharge on DOC changes was directly related to catchment size: GPP dominated DOC fluctuations in small catchments (<1 km2 ), whereas discharge controlled DOC variations in big catchments (>1 km2 ). The direction of the relation between GPP and discharge on DOC varied. Increasing RE always made a positive contribution to DOC concentration. This study reveals that climate change-induced terrestrial greening and shifting hydrology change the DOC export from terrestrial to aquatic ecosystems. The work improves our mechanistic understanding of surface water DOC regulation in boreal catchments and confirms the importance of DOC fluxes in regulating ecosystem C budgets.


Assuntos
Ecossistema , Hidrologia , Carbono/análise , Matéria Orgânica Dissolvida , Rios
4.
Glob Chang Biol ; 25(1): 351-360, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338890

RESUMO

Frost events during the active growth period of plants can cause extensive frost damage with tremendous economic losses and dramatic ecological consequences. A common assumption is that climate warming may bring along a reduction in the frequency and severity of frost damage to vegetation. On the other hand, it has been argued that rising temperature in late winter and early spring might trigger the so called "false spring", that is, early onset of growth that is followed by cold spells, resulting in increased frost damage. By combining daily gridded climate data and 1,489 k in situ phenological observations of 27 tree species from 5,565 phenological observation sites in Europe, we show here that temporal changes in the risk of spring frost damage with recent warming vary largely depending on the species and geographical locations. Species whose phenology was especially sensitive to climate warming tended to have increased risk of frost damage. Geographically, compared with continental areas, maritime and coastal areas in Europe were more exposed to increasing occurrence of frost and these late spring frosts were getting more severe in the maritime and coastal areas. Our results suggest that even though temperatures will be elevated in the future, some phenologically responsive species and many populations of a given species will paradoxically experience more frost damage in the future warming climate. More attention should be paid to the increased frost damage in responsive species and populations in maritime areas when developing strategies to mitigate the potential negative impacts of climate change on ecosystems in the near future.


Assuntos
Mudança Climática , Temperatura Baixa , Árvores/crescimento & desenvolvimento , Europa (Continente) , Congelamento , Estações do Ano
5.
J Environ Manage ; 241: 637-644, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30962006

RESUMO

Climate warming in arctic/subarctic ecosystems will result in increased frequency of forest fires, elevated soil temperatures and thawing of permafrost, which have implications for soil organic matter (SOM) decomposition rates, the CO2 emissions and globally significant soil C stocks in this region. It is still unclear how decomposability and temperature sensitivity of SOM varies in different depths and different stages of succession following forest fire in permafrost regions and studies on long term effects of forest fires in these areas are lacking. To study this question, we took soil samples from 5, 10 and 30 cm depths from forest stands in Northwest Canada, underlain by permafrost, that were burnt by wildfire 3, 25 and over 100 years ago. We measured heterotrophic soil respiration at 1, 7, 13 and 19 °C. Fire had a significant effect on the active layer depth, and it increased the temperature sensitivity (Q10) of respiration in the surface (5 cm) and in the deepest soil layer (30 cm) in the 3-year-old area compared to the 25- and more than 100-year-old areas. Also the metabolic quotient (qCO2) of soil microbes was increased after fire. Though fires may facilitate the SOM decomposition by increasing active layer depth, they also decreased SOM quality, which may limit the rate of decomposition. After fire all of these changes reverted back to original levels with forest succession.


Assuntos
Pergelissolo , Incêndios Florestais , Regiões Árticas , Canadá , Ecossistema , Solo , Temperatura
6.
J Environ Manage ; 228: 405-415, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243076

RESUMO

Rising air temperatures and changes in precipitation patterns in boreal ecosystems are changing the fire occurrence regimes (intervals, severity, intensity, etc.). The main impacts of fires are reported to be changes in soil physical and chemical characteristics, vegetation stress, degradation of permafrost, and increased depth of the active layer. Changes in these characteristics influence the dynamics of carbon dioxide (CO2) and methane (CH4) fluxes. We have studied the changes in CO2 and CH4 fluxes from the soil in boreal forest areas in central Siberia underlain by continuous permafrost and the possible impacts of the aforementioned environmental factors on the emissions of these greenhouse gases. We have used a fire chronosequence of areas, with the last fire occurring 1, 23, 56, and more than 100 years ago. The soils in our study acted as a source of CO2. Emissions of CO2 were lowest at the most recently burned area and increased with forest age throughout the fire chronosequence. The CO2 flux was influenced by the pH of the top 5 cm of the soil, the biomass of the birch (Betula) and alder (Duschekia) trees, and by the biomass of vascular plants in the ground vegetation. Soils were found to be a CH4 sink in all our study areas. The uptake of CH4 was highest in the most recently burned area (forest fire one year ago) and the lowest in the area burned 56 years ago, but the difference between fire chronosequence areas was not significant. According to the linear mixed effect model, none of the tested factors explained the CH4 flux. The results confirm that the impact of a forest fire on CO2 flux is long-lasting in Siberian boreal forests, continuing for more than 50 years, but the impact of forest fire on CH4 flux is minimal.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Betula , Ecossistema , Incêndios , Pergelissolo , Solo , Taiga , Árvores
7.
J Environ Manage ; 212: 332-339, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453118

RESUMO

Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCRP), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCRO). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO2 fluxes were 19.19, 37.49 and 55.93 mg m-2 h-1 higher in CC, CCRP and CCRO, respectively (P < 0.05). Differences in CO2 fluxes were mainly attributed to changes in soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO2 released, and that regarding the CO2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending.


Assuntos
Dióxido de Carbono , Agricultura Florestal , China , Florestas , Solo/química , Temperatura
8.
J Environ Manage ; 223: 713-722, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975899

RESUMO

Lei bamboo (Phyllostachys praecox) is widely distributed in southeastern China. We used eddy covariance to analyze carbon sequestration capacity of a Lei bamboo forest (2011-2013) and to identify the seasonal biotic and abiotic determinants of carbon fluxes. A machine learning algorithm called random forest (RF) was used to identify factors that affected carbon fluxes. The RF model predicted well the gross ecosystem productivity (GEP), ecosystem respiration (RE) and net ecosystem exchange (NEE), and displayed variations in the drivers between different seasons. Mean annual NEE, RE, and GEP were -105.2 ±â€¯23.1, 1264.5 ±â€¯45.2, and 1369.6 ±â€¯52.5 g C m-2, respectively. Climate warming increased RE more than GEP when water inputs were not limiting. Summer drought played little role in suppressing GEP, but low soil moisture contents suppressed RE and increased the carbon sink during drought in the summer. The most important drivers of NEE were soil temperature in spring, summer, and winter, and photosynthetically active radiation in autumn. Air and soil temperature were important drivers of GEP in all seasons.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Ecossistema , Modelos Teóricos , Carbono , Dióxido de Carbono , China
9.
Plant Cell Environ ; 39(2): 233-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25808847

RESUMO

The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water-potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field-measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water-potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late-summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water-potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.


Assuntos
Câmbio/crescimento & desenvolvimento , Osmose , Caules de Planta/fisiologia , Água/fisiologia , Meio Ambiente , Fótons , Fotossíntese , Caules de Planta/crescimento & desenvolvimento , Pressão , Chuva , Análise de Regressão , Estações do Ano , Temperatura , Xilema/fisiologia
10.
Ann Bot ; 117(3): 497-506, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684751

RESUMO

BACKGROUND AND AIMS: Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost-benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests. METHODS: We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost-benefit analysis for the two fern groups. KEY RESULTS: The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC. CONCLUSIONS: Our results demonstrate that leaf cost-benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests.


Assuntos
Ecossistema , Gleiquênias/efeitos da radiação , Florestas , Luz , Folhas de Planta/efeitos da radiação , Clima Tropical , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Análise de Componente Principal , Característica Quantitativa Herdável
11.
Appl Environ Microbiol ; 81(22): 7869-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341215

RESUMO

Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.


Assuntos
Biodiversidade , Incêndios , Fungos/fisiologia , Microbiologia do Solo , Código de Barras de DNA Taxonômico , Finlândia , Sequenciamento de Nucleotídeos em Larga Escala , Estações do Ano , Análise de Sequência de DNA , Taiga
12.
Glob Chang Biol ; 20(11): 3439-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24889888

RESUMO

In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.


Assuntos
Ecossistema , Temperatura Alta , Modelos Teóricos , Regiões Árticas , Ásia , Europa (Continente) , Florestas , Pradaria , América do Norte , Tundra , Áreas Alagadas
13.
Sci Rep ; 14(1): 8594, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615154

RESUMO

Mixed forests play a fundamental ecological role increasing biodiversity and providing ecosystem services; it has been suggested they have higher resilience and resistance against disturbances, particularly fire. Here, we compare tree mortality in post-fire mixed and pure stands in Spain, on 2,782 plots and 30,239 trees during the period 1986 to 2007. We show evidence that mixed stands can have higher post-fire mortality than pure stands, and specific mixtures of species with different fire-related strategies increase the stand's vulnerability to fire damage versus pure stands of either species, such is the case of Pinus halepensis-Pinus nigra mixtures. Mixtures of two species often had higher mortality than species growing in pure stands. Combinations of species with different fire-related strategies can both enhance or reduce forest resistance. The role and management of mixed forests should be reconsidered after these findings, in order to enhance forest resilience to fires.


Assuntos
Ecossistema , Pinus , Florestas , Árvores , Biodiversidade
14.
Microbiol Res ; 283: 127696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518453

RESUMO

Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme ß-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.


Assuntos
Carvão Vegetal , Micobioma , Resiliência Psicológica , Solo/química , Taiga , Ecossistema , Microbiologia do Solo
15.
Physiol Plant ; 148(2): 261-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23025819

RESUMO

The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO2, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO2 regimes (ambient and double ambient CO2 concentration) and two temperatures (ambient and +2.2°C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150-day experiment. Elevated CO2 significantly increased the net photosynthetic rate (Anet ), intrinsic water-use efficiency (WUEi ) and carbon isotope composition (δ¹³C) and decreased stomatal conductance (g(s)) and total chlorophyll concentration based on mass (Chl(m)) and area (Chl(a)). On the other hand, elevated CO2 decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO2 also increased foliar carbon concentration based on mass (C(m)) and area (C(a)), nitrogen concentration based on area (N(a)), carbohydrates concentration (i.e. sucrose, sugar, starch and non-structural carbohydrates) and the slope of the A(net)-N(a) relationship. However, elevated temperature decreased C(m), C(a) and N(a). The combination of elevated CO2 and temperature hardly affected SLA, C(m), C(a), N(m), N(a), Chl(m) and Chl(a). Variables Anet and Na had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO2 and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions.


Assuntos
Bambusa/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Bambusa/fisiologia , Bambusa/efeitos da radiação , Bambusa/ultraestrutura , Metabolismo dos Carboidratos/efeitos dos fármacos , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/fisiologia , Isótopos de Carbono/análise , China , Clorofila/metabolismo , Luz , Células do Mesofilo , Nitrogênio/análise , Nitrogênio/metabolismo , Fenótipo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Transpiração Vegetal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos da radiação , Plântula/ultraestrutura , Temperatura , Árvores , Água/fisiologia
16.
Nature ; 447(7146): 848-50, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17568744

RESUMO

Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).


Assuntos
Carbono/metabolismo , Clima , Ecossistema , Atividades Humanas , Árvores/metabolismo , Nitrogênio/metabolismo
17.
Front Plant Sci ; 14: 1154232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152132

RESUMO

Stem respiration (R s) plays a vital role in ecosystem carbon cycling. However, the measured efflux on the stem surface (E s) is not always in situ R s but only part of it. A previously proposed mass balance framework (MBF) attempted to explore the multiple partitioning pathways of R s, including sap-flow-transported and internal storage of R s, in addition to E s. This study proposed stem photosynthesis as an additional partitioning pathway to the MBF. Correspondingly, a double-chamber apparatus was designed and applied on newly sprouted Moso bamboo (Phyllostachys edulis) in leafless and leaved stages. R s of newly sprouted bamboo were twice as high in the leafless stage (7.41 ± 2.66 µmol m-2 s-1) than in the leaved stage (3.47 ± 2.43 µmol m-2 s-1). E s accounted for ~80% of R s, while sap flow may take away ~2% of R s in both leafless and leaved stages. Culm photosynthesis accounted for ~9% and 13% of R s, respectively. Carbon sequestration from culm photosynthesis accounted for approximately 2% of the aboveground bamboo biomass in the leafless stage. High culm photosynthesis but low sap flow during the leafless stage and vice versa during the leaved stage make bamboo an outstanding choice for exploring the MBF.

18.
Am J Bot ; 99(5): 827-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22523348

RESUMO

PREMISE OF THE STUDY: In a warming climate, boreal trees may have adjusted their growth strategy (e.g., onset and coordination of growth among different organs such as stem, shoot, and foliage, within and among species) to cope with the extended growing seasons. A detailed investigation into growth of different organs during a growing season may help us assess the potential effects of climate change on tree growth in the boreal forest. METHODS: The intra-annual growth of stem xylem, shoot tips, and foliage area of Pinus banksiana, Populus tremuloides, and Betula papyrifera was monitored in a boreal forest in Quebec, Canada during the growing season of 2007. Xylem formation was measured at weekly intervals, and shoot elongation and foliage expansion were measured three times per week from May to September. Growth indices for stem, shoot, and foliage were calculated and used to identify any climate-growth dependence. KEY RESULTS: The time periods required for stem growth, branch extension, and foliage expansion differed among species. Of the three species, P. banksiana had the earliest budburst (20 May) yet the latest completion date of the foliage growth (2 August); P. tremuloides had the latest budburst (27 May) yet the earliest completion date of the foliage growth (10 July). Air temperature positively affected shoot extension growth of all three species. Precipitation positively influenced stem growth of the two broadleaf species, whereas growing season temperature positively impacted stem growth of P. banksiana. CONCLUSION: The results show that both the timing of growth processes and environmental dependences differ among co-occurring species, thereby leading to different adaptive capability of these boreal tree species to climate change.


Assuntos
Ecossistema , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Betula/anatomia & histologia , Betula/citologia , Betula/crescimento & desenvolvimento , Canadá , Contagem de Células , Conceitos Meteorológicos , Pinus/anatomia & histologia , Pinus/citologia , Pinus/crescimento & desenvolvimento , Brotos de Planta/citologia , Populus/anatomia & histologia , Populus/citologia , Populus/crescimento & desenvolvimento , Estações do Ano , Árvores/anatomia & histologia , Árvores/citologia , Madeira/citologia , Xilema/citologia
19.
Bioresour Technol ; 346: 126665, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990857

RESUMO

The purpose of this study was to evaluate the bioremediation potential of the microalga Scenedesmus quadricauda in removing hexavalent chromium (Cr (VI)) from synthetic wastewater, under autotrophic and heterotrophic conditions and different inoculum concentrations. In both cultivation modes, the highest inoculum density of 0.8 g L-1 led to the highest Cr (VI) removal efficiency. In addition, Cr (VI) stress was more severe in 10 ppm compared to 5 ppm, while heavy metal effects were alleviated under heterotrophic conditions. Concurrently, Cr (VI) stress affected biomass quality, resulting in an increase in lipid and carbohydrate production and decreased proteins. Furthermore, under higher Cr (VI) concentration more saturated and monounsaturated fatty acids were produced, while monounsaturated fatty acids content was also greater under heterotrophic conditions. In total, the findings of this study highlight the advantages of heterotrophic cultivation of microalgae for concomitant industrial wastewater treatment and biofuel production.


Assuntos
Microalgas , Scenedesmus , Biodegradação Ambiental , Biocombustíveis , Biomassa , Cromo/toxicidade
20.
FEMS Microbiol Ecol ; 98(8)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35749564

RESUMO

Microbial communities often possess enormous diversity, raising questions about whether this diversity drives ecosystem functioning, especially the influence of diversity on soil decomposition and respiration. Although functional redundancy is widely observed in soil microorganisms, evidence that species occupy distinct metabolic niches has also emerged. In this paper, we found that apart from the environmental variables, increases in microbial diversity, notably bacterial diversity, lead to an increase in soil C emissions. This was demonstrated using structural equation modelling (SEM), linking soil respiration with naturally differing levels of soil physio-chemical properties, vegetation coverage, and microbial diversity after fire disturbance. Our SEMs also revealed that models including bacterial diversity explained more variation of soil CO2 emissions (about 45%) than fungal diversity (about 38%). A possible explanation of this discrepancy is that fungi are more multifunctional than bacteria and, therefore, an increase in fungal diversity does not necessarily change soil respiration. Further analysis on functional gene structure suggested that bacterial and fungal diversities mainly explain the potential decomposition of recalcitrant C compare with that of labile C. Overall, by incorporating microbial diversity and the environmental variables, the predictive power of models on soil C emission was significantly improved, indicating microbial diversity is crucial for predicting ecosystem functions.


Assuntos
Microbiota , Solo , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Ecossistema , Florestas , Fungos/genética , Fungos/metabolismo , Solo/química , Microbiologia do Solo , Taiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA