Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835009

RESUMO

The peripheral immune system plays a critical role in neuroinflammation of the central nervous system after an insult. Hypoxic-ischemic encephalopathy (HIE) induces a strong neuroinflammatory response in neonates, which is often associated with exacerbated outcomes. In adult models of ischemic stroke, neutrophils infiltrate injured brain tissue immediately after an ischemic insult and aggravate inflammation via various mechanisms, including neutrophil extracellular trap (NETs) formation. In this study, we used a neonatal model of experimental hypoxic-ischemic (HI) brain injury and demonstrated that circulating neutrophils were rapidly activated in neonatal blood. We observed an increased infiltration of neutrophils in the brain after exposure to HI. After treatment with either normothermia (NT) or therapeutic hypothermia (TH), we observed a significantly enhanced expression level of the NETosis marker Citrullinated H3 (Cit-H3), which was significantly more pronounced in animals treated with TH than in those treated with NT. NETs and NLR family pyrin domain containing 3 (NLRP-3) inflammasome assembly are closely linked in adult models of ischemic brain injury. In this study, we observed an increase in the activation of the NLRP-3 inflammasome at the time points analyzed, particularly immediately after TH, when we observed a significant increase in NETs structures in the brain. Together, these results suggest the important pathological functions of early arriving neutrophils and NETosis following neonatal HI, particularly after TH treatment, which is a promising starting point for the development of potential new therapeutic targets for neonatal HIE.


Assuntos
Lesões Encefálicas , Armadilhas Extracelulares , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Animais , Ratos , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Armadilhas Extracelulares/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Inflamassomos/metabolismo , Inflamação/patologia
2.
J Cell Sci ; 131(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29898920

RESUMO

The formation of complex dendritic arbors is crucial for the assembly of functional networks as abnormal dendrite formation underlies several neurodevelopmental and psychiatric disorders. Many extracellular factors have been postulated as regulators of dendritic growth. Wnt proteins play a critical role in neuronal development and circuit formation. We previously demonstrated that Wnt7b acts through the scaffold protein dishevelled 1 (Dvl1) to modulate dendrite arborisation by activating a non-canonical Wnt signalling pathway. Here, we identify the seven-transmembrane frizzled-7 (Fz7, also known as FZD7) as the receptor for Wnt7b-mediated dendrite growth and complexity. Importantly, Fz7 is developmentally regulated in the intact hippocampus, and is localised along neurites and at dendritic growth cones, suggesting a role in dendrite formation and maturation. Fz7 loss-of-function studies demonstrated that Wnt7b requires Fz7 to promote dendritic arborisation. Moreover, in vivo Fz7 loss of function results in dendritic defects in the intact mouse hippocampus. Furthermore, our findings reveal that Wnt7b and Fz7 induce the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and JNK proteins, which are required for dendritic development. Here, we demonstrate that Wnt7b-Fz7 signals through two non-canonical Wnt pathways to modulate dendritic growth and complexity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Hipocampo/crescimento & desenvolvimento , MAP Quinase Quinase 4/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dendritos/enzimologia , Dendritos/genética , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled , Hipocampo/metabolismo , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/genética , Via de Sinalização Wnt
3.
Acta Neuropathol ; 138(4): 515-533, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31230104

RESUMO

Parkinson's disease and related disorders are neuropathologically characterized by cellular deposits of misfolded and aggregated α-synuclein in the CNS. Disease-associated α-synuclein adopts a conformation that causes it to form oligomers and fibrils, which have reduced solubility, become hyperphosphorylated, and contribute to the spatiotemporal spreading of pathology in the CNS. The infectious properties of disease-associated α-synuclein, e.g., by which peripheral route and with which efficiency it can be transmitted, are not fully understood. Here, we investigated the potential of α-synuclein fibrils to induce neurological disease in TgM83+/- mice expressing the A53T mutant of human α-synuclein after oral or intravenous challenge and compared it to intraperitoneal and intracerebral challenge. Oral challenge with 50 µg of α-synuclein fibrils caused neurological disease in two out of eight mice in 220 days and 350 days, and challenge with 500 µg in four out of eight mice in 384 ± 131 days, respectively. Intravenous challenge with 50 µg of α-synuclein fibrils led to disease in 208 ± 20 days in 10 out of 10 mice and was in duration comparable to intraperitoneal challenge with 50 µg of α-synuclein fibrils, which caused disease in 10 out of 10 mice in 202 ± 35 days. Ten out of 10 mice that were each intracerebrally challenged with 10 µg or 50 µg of α-synuclein fibrils developed disease in 156 ± 20 days and 133 ± 4 days, respectively. The CNS of diseased mice displayed aggregates of sarkosyl-insoluble and phosphorylated α-synuclein, which colocalized with ubiquitin and p62 and were accompanied by gliosis indicative of neuroinflammation. In contrast, none of the control mice that were challenged with bovine serum albumin via the same routes developed any neurological disease or neuropathology. These findings are important, because they show that α-synuclein fibrils can neuroinvade the CNS after a single oral or intravenous challenge and cause neuropathology and disease.


Assuntos
Encéfalo/patologia , Sinucleinopatias/patologia , alfa-Sinucleína/administração & dosagem , Administração Intravenosa , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Fosforilação , Sinucleinopatias/induzido quimicamente , alfa-Sinucleína/metabolismo
4.
J Virol ; 90(20): 9182-93, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489279

RESUMO

UNLABELLED: α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83(+/-):Gfap-luc(+/-)) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvade the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease. IMPORTANCE: Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein causes neurodegeneration after neuroinvasion from the periphery, which further corroborates the prionoid character of misfolded α-synuclein.


Assuntos
Sistema Nervoso Central/patologia , Proteínas Priônicas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Injeções Intraperitoneais , Camundongos , Paralisia/etiologia , Proteínas Priônicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
5.
Sci Rep ; 13(1): 9467, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301929

RESUMO

Intrapartum hypoxia-ischemia leading to neonatal encephalopathy (NE) results in significant neonatal mortality and morbidity worldwide, with > 85% of cases occurring in low- and middle-income countries (LMIC). Therapeutic hypothermia (HT) is currently the only available safe and effective treatment of HIE in high-income countries (HIC); however, it has shown limited safety or efficacy in LMIC. Therefore, other therapies are urgently required. We aimed to compare the treatment effects of putative neuroprotective drug candidates following neonatal hypoxic-ischemic (HI) brain injury in an established P7 rat Vannucci model. We conducted the first multi-drug randomized controlled preclinical screening trial, investigating 25 potential therapeutic agents using a standardized experimental setting in which P7 rat pups were exposed to unilateral HI brain injury. The brains were analysed for unilateral hemispheric brain area loss after 7 days survival. Twenty animal experiments were performed. Eight of the 25 therapeutic agents significantly reduced brain area loss with the strongest treatment effect for Caffeine, Sonic Hedgehog Agonist (SAG) and Allopurinol, followed by Melatonin, Clemastine, ß-Hydroxybutyrate, Omegaven, and Iodide. The probability of efficacy was superior to that of HT for Caffeine, SAG, Allopurinol, Melatonin, Clemastine, ß-hydroxybutyrate, and Omegaven. We provide the results of the first systematic preclinical screening of potential neuroprotective treatments and present alternative single therapies that may be promising treatment options for HT in LMIC.


Assuntos
Asfixia Neonatal , Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Melatonina , Fármacos Neuroprotetores , Animais , Humanos , Recém-Nascido , Ratos , Alopurinol/farmacologia , Animais Recém-Nascidos , Asfixia Neonatal/tratamento farmacológico , Encéfalo , Lesões Encefálicas/tratamento farmacológico , Cafeína/farmacologia , Clemastina/farmacologia , Modelos Animais de Doenças , Proteínas Hedgehog , Hidroxibutiratos/farmacologia , Hipotermia Induzida/métodos , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Isquemia/terapia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Oxid Med Cell Longev ; 2022: 2479626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281473

RESUMO

Hypoxic-ischemic encephalopathy (HIE) mainly affects preterm and term newborns, leading to a high risk of brain damage. Coexisting infection/inflammation and birth asphyxia are key factors associated with intracerebral increase of proinflammatory cytokines linked to HIE. Microglia are key mediators of inflammation during perinatal brain injury, characterized by their phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with pro- and anti-inflammatory cytokines as well as the nucleotide-binding domain, leucine-rich repeat protein (NLRP-3) inflammasome from microglia cells. For this purpose, we used our established neonatal rat model of inflammation-sensitized hypoxic-ischemic (HI) brain injury in seven-day-old rats. We assessed gene expression profiles of 11 cytokines and for NLRP-3 using real-time PCR from sorted CD11b/c microglia of brain samples at different time points (3.5 h after LPS injection and 0, 5, 24, 48, and 72 hours post HI) following different treatments: vehicle, E. coli lipopolysaccharide (LPS), vehicle/HI, and LPS/HI. Our results showed that microglia are early key mediators of the inflammatory response and exacerbate the inflammatory response following HI, polarizing into a predominant proinflammatory M1 phenotype in the early hours post HI. The brains only exposed to HI showed a delay in the expression of proinflammatory cytokines. We also demonstrated that NLRP-3 plays a role in the inflammatory resolution with a high expression after HI insult. The combination of both, a preinfection/inflammation condition and hypoxia-ischemia, resulted in a higher proinflammatory cytokine storm, highlighting the significant contribution of acute inflammation sensitizing prior to a hypoxic insult on the severity of perinatal brain damage.


Assuntos
Lesões Encefálicas/genética , Hipóxia-Isquemia Encefálica/genética , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar
7.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33108356

RESUMO

Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-κB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Microglia/enzimologia , Biossíntese de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/genética , Animais , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/genética , Serina-Treonina Quinases TOR/genética
8.
J Vis Exp ; (122)2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28448035

RESUMO

To study the prion-like behavior of misfolded alpha-synuclein, mouse models are needed that allow fast and simple transmission of alpha-synuclein prionoids, which cause neuropathology within the central nervous system (CNS). Here we describe that intraglossal or intraperitoneal injection of alpha-synuclein fibrils into bigenic Tg(M83+/-:Gfap-luc+/-) mice, which overexpress human alpha-synuclein with the A53T mutation from the prion protein promoter and firefly luciferase from the promoter for glial fibrillary acidic protein (Gfap), is sufficient to induce neuropathologic disease. In comparison to homozygous Tg(M83+/+) mice that develop severe neurologic symptoms beginning at an age of 8 months, heterozygous Tg(M83+/-:Gfap-luc+/-) animals remain free of spontaneous disease until they reach an age of 22 months. Interestingly, injection of alpha-synuclein fibrils via the intraperitoneal route induced neurologic disease with paralysis in four of five Tg(M83+/-:Gfap-luc+/-) mice with a median incubation time of 229 ±17 days. Diseased animals showed severe deposits of phosphorylated alpha-synuclein in their brains and spinal cords. Accumulations of alpha-synuclein were sarkosyl-insoluble and colocalized with ubiquitin and p62, and were accompanied by an inflammatory response resulting in astrocytic gliosis and microgliosis. Surprisingly, inoculation of alpha-synuclein fibrils into the tongue was less effective in causing disease with only one of five injected animals showing alpha-synuclein pathology after 285 days. Our findings show that inoculation via the intraglossal route and more so via the intraperitoneal route is suitable to induce neurologic illness with relevant hallmarks of synucleinopathies in Tg(M83+/-:Gfap-luc+/-) mice. This provides a new model for studying prion-like pathogenesis induced by alpha-synuclein prionoids in greater detail.


Assuntos
Medições Luminescentes/métodos , alfa-Sinucleína/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Humanos , Injeções Intraperitoneais , Luciferases , Camundongos , Camundongos Transgênicos , Medula Espinal/metabolismo , Medula Espinal/patologia , alfa-Sinucleína/administração & dosagem
10.
Acta Neuropathol Commun ; 3: 75, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26612754

RESUMO

INTRODUCTION: Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases that are characterized by the intracellular accumulation of alpha-synuclein containing aggregates. Recent increasing evidence suggests that Parkinson's disease and MSA pathology spread throughout the nervous system in a spatiotemporal fashion, possibly by prion-like propagation of alpha-synuclein positive aggregates between synaptically connected areas. Concurrently, intracerebral injection of pathological alpha-synuclein into transgenic mice overexpressing human wild-type alpha-synuclein, or human alpha-synuclein with the familial A53T mutation, or into wild-type mice causes spreading of alpha-synuclein pathology in the CNS. Considering that wild-type mice naturally also express a threonine at codon 53 of alpha-synuclein, it has remained unclear whether human wild-type alpha-synuclein alone, in the absence of endogenously expressed mouse alpha-synuclein, would support a similar propagation of alpha-synuclein pathology in vivo. RESULTS: Here we show that brain extracts from two patients with MSA and two patients with probable incidental Lewy body disease (iLBD) but not phosphate-buffered saline induce prion-like spreading of pathological alpha-synuclein after intrastriatal injection into mice expressing human wild-type alpha-synuclein. Mice were sacrificed at 3, 6, and 9 months post injection and analyzed neuropathologically and biochemically. Mice injected with brain extracts from patients with MSA or probable iLBD both accumulated intraneuronal inclusion bodies, which stained positive for phosphorylated alpha-synuclein and appeared predominantly within the injected brain hemisphere after 6 months. After 9 months these intraneuronal inclusion bodies had spread to the contralateral hemisphere and more rostral and caudal areas. Biochemical analysis showed that brains of mice injected with brain extracts from patients with MSA and probable iLBD contained hyperphosphorylated alpha-synuclein that also seeded aggregation of recombinant human wild-type alpha-synuclein in a Thioflavin T binding assay. CONCLUSIONS: Our results indicate that human wild-type alpha-synuclein supports the prion-like spreading of alpha-synuclein pathology in the absence of endogenously expressed mouse alpha-synuclein in vivo.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Atrofia de Múltiplos Sistemas/patologia , Mutação/genética , alfa-Sinucleína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Sequestossoma-1 , Ubiquitina/metabolismo , alfa-Sinucleína/genética
11.
Front Cell Neurosci ; 7: 194, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298236

RESUMO

Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA