RESUMO
BACKGROUND: Benzalkonium chloride (BAK), the most commonly used preservative in anti-glaucoma eye drops, inflicts damage to the ocular surface. A novel anti-glaucoma formulation that avoids the use of BAK has been developed. The aim of this study was to evaluate the cytotoxicity of this formulation and to compare it with an ophthalmic solution containing BAK. METHODS: Two different latanoprost eye drops were used: one ophthalmic solution (LSc) containing BAK 0.02% and one ophthalmic nanoemulsion (LNe) with a soft preservative (potassium sorbate 0.18%). Human epithelial conjunctival cells were incubated for 15, 30, and 60 min with either LSc or LNe. The cytotoxicity was determined by MTT assay. Cell death was measured by flow cytometry using annexin V-FITC and propidium iodide. RESULTS: The values of cell viability and proliferation obtained from cells exposed to LNe were between 80 and 90% relative to the control group, whereas values obtained from cells exposed to LSc were around 30% at all study times (p < 0.05 at 15 and 30 min; p < 0.01 at 60 min). The percentage of viable cells decreased significantly when cells were incubated with LSc compared with cells incubated with LNe at all the study times, while the percentage of cells in late apoptosis/necrosis increased significantly in cells exposed to LSc compared to LNe. CONCLUSIONS: The new latanoprost nanoemulsion is significantly less cytotoxic on human conjunctival cells than LSc. These results suggest that the new formulation might be gentler on the eye surface than currently available BAK-preserved latanoprost solutions.
Assuntos
Glaucoma , Prostaglandinas F Sintéticas , Anti-Hipertensivos/toxicidade , Compostos de Benzalcônio/metabolismo , Compostos de Benzalcônio/toxicidade , Cloprostenol/metabolismo , Túnica Conjuntiva/metabolismo , Glaucoma/metabolismo , Humanos , Latanoprosta/toxicidade , Soluções Oftálmicas/toxicidade , Conservantes Farmacêuticos/metabolismo , Conservantes Farmacêuticos/toxicidade , Prostaglandinas F Sintéticas/toxicidade , TravoprostRESUMO
Previous reports indicate that the central nervous system (CNS) is a target of air pollution, causing tissue damage and functional alterations. Oxidative stress and neuroinflammation have been pointed out as possible mechanisms mediating these effects. The aim of this work was to study the chronic effects of urban air pollution on mice brain cortex, focusing on oxidative stress markers, and mitochondrial function. Male 8-week-old BALB/c mice were exposed to filtered air (FA, control) or urban air (UA) inside whole-body exposure chambers, located in a highly polluted area of Buenos Aires city, for up to 4 weeks. Glutathione levels, assessed as GSH/GSSG ratio, were decreased after 1 and 2 weeks of exposure to UA (45% and 25% respectively vs. FA; p < 0.05). A 38% increase in lipid peroxidation was found after 1 week of UA exposure (p < 0.05). Regarding protein oxidation, carbonyl content was significantly increased at week 2 in UA-exposed mice, compared to FA-group, and an even higher increment was found after 4 weeks of exposure (week 2: 40% p < 0.05, week 4: 54% p < 0.001). NADPH oxidase (NOX) and glutathione peroxidase (GPx) activities were augmented at all the studied time points, while superoxide dismutase (Cu,Zn-SOD cytosolic isoform) and glutathione reductase (GR) activities were increased only after 4 weeks of UA exposure (p < 0.05). The increased NOX activity was accompanied with higher expression levels of NOX2 regulatory subunit p47phox, and NOX4 (p < 0.05). Also, UA mice showed impaired mitochondrial function due to a 50% reduction in O2 consumption in active state respiration (p < 0.05), a 29% decrease in mitochondrial inner membrane potential (p < 0.05), a 65% decrease in ATP production rate (p < 0.01) and a 30% increase in H2O2 production (p < 0.01). Moreover, respiratory complexes I-III and II-III activities were decreased in UA group (30% and 36% respectively vs. FA; p < 0.05). UA exposed mice showed alterations in mitochondrial function, increased oxidant production evidenced by NOX activation, macromolecules damage and the onset of the enzymatic antioxidant system. These data indicate that oxidative stress and impaired mitochondrial function may play a key role in CNS damage mechanisms triggered by air pollution.
Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/patologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
The aim of the study was to evaluate the time course of the effects of urban air pollutants on the ocular surface, focusing on the morphological changes, the redox balance, and the inflammatory response of the cornea. 8-week-old mice were exposed to urban or filtered air (UA-group and FA-group, respectively) in exposure chambers for 1, 2, 4, and 12â¯weeks. After each time, the eyes were enucleated and the corneas were isolated for biochemical analysis. UA-group corneas exhibited a continuous increase in NADPH oxidase-4 levels throughout the exposure time, suggesting an increased production of reactive oxygen species (ROS). After 1â¯week, an early adaptive response to ROS was observed as an increase in antioxidant enzymes. After 4â¯weeks, the enzymatic antioxidants were decreased, meanwhile an increase of the glutathione was shown, as a later compensatory antioxidant response. However, redox imbalance took place, evidenced by the increased oxidized proteins, which persisted up to 12â¯weeks. At this time point, corneal epithelium hyperplasia was also observed. The inflammatory response was modulated by the increase in IL-10 levels after 1â¯week, which early regulates the release of TNF-α and IL-6. These results suggest that air pollution alters the ocular surface, supported by the observed cellular hyperplasia. The redox imbalance and the inflammatory response modulated by IL-10 play a key role in the response triggered by air pollutants on the cornea. Taking into account this time course study, the ocular surface should also be considered as a relevant target of urban air pollutants.
Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Epitélio Corneano/patologia , Animais , Brasil , Cidades , Epitélio Corneano/efeitos dos fármacos , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Interleucina-10/metabolismo , Masculino , Camundongos , NADPH Oxidase 4/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Testes de Toxicidade Subaguda , Testes de Toxicidade SubcrônicaRESUMO
The aim of this study was to evaluate the time course of oxidative stress markers and inflammatory mediators in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP) for 1, 3, and 24â¯h. Reactive oxygen species (ROS) production, lipid and protein oxidation, Nrf2 pathway activation, enzymatic antioxidants, glutathione (GSH) levels and synthesis, as well as cytokine release and cell proliferation were analyzed. Cells exposed to DEP showed an increase in ROS at all time points. The induction of NADPH oxidase-4 appeared later than mitochondrial superoxide anion production, when the cell also underwent a proinflammatory response mediated by IL-6. DEP exposure triggered the activation of Nrf2 in IOBA-NHC, as a strategy for increasing cellular antioxidant capacity. Antioxidant enzyme activities were significantly increased at early stages except for glutathione reductase (GR) that showed a significant decrease after a 3-h-incubation. GSH levels were found increased after 1 and 3â¯h of incubation with DEP, despite the increase in its consumption by the antioxidant enzymes as it works as a cofactor. GSH recycling and the de novo synthesis were responsible for the maintenance of its content at these time points, respectively. After 24â¯h, the decrease in GR and glutamate cysteine ligase as wells as the enhanced activity of glutathione peroxidase and glutathione S-transferase produced a depletion in the GSH pool. Lipid-peroxidation was found increased in cells exposed to DEP after 1-h-incubation, whereas protein oxidation was found increased in cells exposed to DEP after a 3-h-incubation that persisted after a longer exposure. Furthermore, DEP lead IOBA-NHC cells to hyperplasia after 1 and 3â¯h of incubation, but a decrease in cell proliferation was found after longer exposure. ROS production seems to be an earlier event triggered by DEP on IOBA-NHC, comparing to the proinflammatory response mediated by IL-6. Despite the fact that under short periods of exposure to DEP lipids and then proteins are targets of oxidative damage, the viability of the cells is not affected at early stages, since cell hyperplasia was detected as compensatory mechanism. Although after 24â¯h Nrf2 pathway is still enhanced, the epithelial cell capacity to maintain redox balance is exceeded. The antioxidant enzymes activation and the depleted GSH pool are not capable of counteracting the increased ROS production, leading to oxidative damage.
Assuntos
Poluentes Atmosféricos/toxicidade , Túnica Conjuntiva/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos , Potenciais da Membrana/fisiologia , Mitocôndrias/metabolismo , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Peroxidase/metabolismo , Superóxidos/metabolismoRESUMO
Volcanic ash could pose a hazard to the ocular surface as it is constantly exposed to environmental particles. We exposed conjunctival cells to Puyehue-Cordón Caulle volcanic complex (PCCVC) or Calbuco ash particles and evaluated proliferation, viability, apoptosis, MUC1 expression, pro-inflammatory cytokines, and oxidative stress markers. Ash particles from these volcanoes vary in size, composition, and morphology. Our results demonstrate that PCCVC but not Calbuco ash particles induce cytotoxicity on human conjunctival epithelial cells viewed as a decrease in cell proliferation and the transmembrane mucin MUC1 expression; a pro-inflammatory response mediated by IL-6 and IL-8; and an imbalance of the redox environment leading to protein oxidative damage. This is the first in vitro study that assesses the biological effect of volcanic ash particles on human conjunctival epithelial cells and the involvement of inflammatory mediators and oxidative stress as the mechanisms of damage. Our results could provide a better understanding of the ocular symptoms manifested by people living near volcanic areas.
Assuntos
Inflamação , Estresse Oxidativo , Material Particulado , Erupções Vulcânicas , Poluentes Atmosféricos/toxicidade , Células Epiteliais , Humanos , Inflamação/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidadeRESUMO
PURPOSE: Intravitreal melphalan is emerging as an effective treatment for refractory vitreous seeds in retinoblastoma, but there is limited understanding regarding its toxicity. This study evaluates the retinal and systemic toxicity of intravitreal melphalan in retinoblastoma patients, with preclinical validation in a rabbit model. DESIGN: Clinical and preclinical, prospective, cohort study. PARTICIPANTS: In the clinical study, 16 patient eyes received 107 intravitreal injections of 30 µg melphalan given weekly, a median of 6.5 times (range, 5-8). In the animal study, 12 New Zealand/Dutch Belt pigmented rabbits were given 3 weekly injections of 15 µg of intravitreal melphalan or vehicle to the right eye. METHODS: Electroretinogram (ERG) responses were recorded in both humans and rabbits. For the clinical study, ERG responses were recorded at baseline, immediately before each injection, and at each follow-up visit; 82 of these studies were deemed evaluable. Median follow-up time was 5.2 months (range, 1-11). Complete blood counts (CBCs) were obtained on the day of injection at 46 patient visits. In the animal study, ERG responses were obtained along with fluorescein angiography, CBCs, and melphalan plasma concentration. After humane killing, the histopathology of the eyes was evaluated. MAIN OUTCOME MEASURES: For the clinical study, we measured peak-to-peak ERG amplitudes in response to 30-Hz photopic flicker stimulation with comparisons between ERG studies before and after intravitreal melphalan. For the animal study, we collected ERG parameters before and after intravitreal melphalan injections with histopathologic findings. RESULTS: By linear regression analysis, over the course of weekly intravitreal injections in retinoblastoma patients, for every additional injection, the ERG amplitude decreased by approximately 5.8 µV. The ERG remained stable once the treatment course was completed. In retinoblastoma patients, there were no grade 3 or 4 hematologic events. One week after the second injection in rabbits, the a- and b-wave amplitude declined significantly in the melphalan treated eyes compared with vehicle-treated eyes (P<0.05). Histopathology revealed severely atrophic retina. CONCLUSIONS: Weekly injections of 30 µg of melphalan can result in a decreased ERG response, which is indicative of retinal toxicity. These findings are confirmed at an equivalent dose in rabbit eyes by ERG measurements and by histopathologic evidence of severe retinal damage. Systemic toxicity with intravitreal melphalan at these doses in humans or rabbits was not detected.
Assuntos
Antineoplásicos Alquilantes/toxicidade , Melfalan/toxicidade , Inoculação de Neoplasia , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/efeitos adversos , Contagem de Células Sanguíneas , Criança , Pré-Escolar , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Feminino , Angiofluoresceinografia , Humanos , Lactente , Injeções Intravítreas , Masculino , Melfalan/administração & dosagem , Melfalan/efeitos adversos , Estudos Prospectivos , Coelhos , Análise de Regressão , Neoplasias da Retina/fisiopatologia , Retinoblastoma/fisiopatologia , Corpo Vítreo/patologiaRESUMO
BACKGROUND: Diabetic foot ulcers (DFUs) constitute a complication that occurs in 19% to 34% of patients with diabetes mellitus (DM). The aim of this study is to describe median days to healing, average velocity of wound closure, and percentage of wound surface closed at 3, 6, and 12 weeks through the use of homogenized and lyophilized amniotic membrane (hAMpe) dressings for the treatment of DFUs in ambulatory patients. METHODS: An observational, descriptive, longitudinal study was performed. Patients presenting with granulation-based DFU, after proper debridement, were included from August 19, 2021, until July 14, 2023. hAMpe dressings placed every 3 days were used for the treatment of these ulcers. RESULTS: Sixteen patients were included with a mean age of 52.38 (8.07) years. The analyzed lesions were postsurgical ulcers in 15 of the 16 included patients. Median ulcer size was 19.5 cm2 (6.12-36). The median ABI was 1.10 (1-1.14). The median days to healing was 96 (71-170). The median percentage closure of the wound at 3 weeks was 41% (28.9%-55.3%), at 6 weeks it was 68.2% (48.6%-74.2%), and at 12 weeks it was 100% (81%-100%). The average velocity closure was 1.04% per day (95% CI 0.71%-1.31%). It was higher during the closure of the first 50% of the ulcer, 2.12% per day (95% CI 0.16%-4.09%), and decreased from 50% to 25% of the ulcer size to 0.67% per day (95% CI 0.23%-1.10%) and from 25% to closure to 0.47% per day (95% CI 0.14%-0.80%), P < .001. CONCLUSION: These results are difficult to compare to other studies given the higher surface area of the ulcers included in our sample. The development of hAMpe dressings enables patients to apply them without requiring assistance from health care teams and was not associated with any recognized complications.
Assuntos
Âmnio , Pé Diabético , Cicatrização , Humanos , Pé Diabético/terapia , Pessoa de Meia-Idade , Feminino , Masculino , Âmnio/transplante , Estudos Longitudinais , Curativos Biológicos , Adulto , Liofilização , Bandagens , IdosoRESUMO
Decoration of nanoparticles with specific molecules such as antibodies, peptides, and proteins that preserve their biological properties is essential for the recognition and internalization of their specific target cells. Inefficient preparation of such decorated nanoparticles leads to nonspecific interactions diverting them from their desired target. We report a simple two-step procedure for the preparation of biohybrid nanoparticles containing a core of hydrophobic quantum dots coated with a multilayer of human serum albumin. These nanoparticles were prepared by ultra-sonication, crosslinked using glutaraldehyde, and decorated with proteins such as human serum albumin or human transferrin in their native conformations. These nanoparticles were homogeneous in size (20-30 nm), retained the fluorescent properties of quantum dots, and did not show a "corona effect" in the presence of serum. The uptake of transferrin-decorated quantum dot nanoparticles was observed in A549 lung cancer and SH-SY5Y neuroblastoma cells but not in non-cancerous 16HB14o- or retinoic acid dopaminergic neurons differentiated SH-SY5Y cells. Furthermore, digitoxin-loaded transferrin-decorated nanoparticles decreased the number of A549 cells without effect on 16HB14o-. Finally, we analyzed the in vivo uptake of these biohybrids by murine retinal cells, demonstrating their capacity to selectively target and deliver into specific cell types with excellent traceability.
RESUMO
Air pollution exposure positively correlates with increased cardiovascular morbidity and mortality rates, mainly due to myocardial infarction (MI). Herein, we aimed to study the metabolic mechanisms underlying this association, focusing on the evaluation of cardiac mitochondrial function and dynamics, together with its impact over MI progression. An initial time course study was performed in BALB/c mice breathing filtered air (FA) or urban air (UA) in whole-body exposure chambers located in Buenos Aires City downtown for up to 16 weeks (n = 8 per group and time point). After 12 weeks, lung inflammatory cell recruitment was evident in UA-exposed mice. Interestingly, impaired redox metabolism, characterized by decreased lung SOD activity and increased GSSG levels and NOX activity, precede local inflammation in this group. At this selected time point, additional mice were exposed to FA or UA (n = 12 per group) and alveolar macrophage PM uptake and nitric oxide (NO) production was observed in UA-exposed mice, together with increased pro-inflammatory cytokine levels (TNF-α and IL-6) in BAL and plasma. Consequently, impaired heart tissue oxygen metabolism and altered mitochondrial ultrastructure and function were observed in UA-exposed mice after 12 weeks, characterized by decreased active state respiration and ATP production rates, and enhanced mitochondrial H2O2 production. Moreover, disturbed cardiac mitochondrial dynamics was detected in this group. This scenario led to a significant increase in the area of infarcted tissue following myocardial ischemia reperfusion injury in vivo, from 43 ± 3% of the area at risk in mice breathing FA to 66 ± 4% in UA-exposed mice (n = 6 per group, p < 0.01), together with a sustained increase in LVEDP during myocardial reperfusion. Taken together, our data unravel cardiac mitochondrial mechanisms that contribute to the understanding of the adverse health effects of urban air pollution exposure, and ultimately highlight the importance of considering environmental factors in the development of cardiovascular diseases.
Assuntos
Poluição do Ar , Infarto do Miocárdio , Poluição do Ar/análise , Animais , Peróxido de Hidrogênio , Camundongos , Mitocôndrias , Infarto do Miocárdio/induzido quimicamente , Material Particulado/toxicidadeRESUMO
BACKGROUND: The purpose of this study is to report the effect of different media osmolarity on a cell line monolayer of normal human conjunctival epithelia (IOBA-NHC) using Electric Cell-substrate Impedance Sensing (ECIS). METHODS: We built our own ECIS system. We fabricated biocompatible microelectrodes. We used a monolayer of IOBA-NHC cells with media at different osmolarities (315, 360, 446, and 617 mOsm/l). RESULTS: When there is an increase in hyperosmolarity, there is a slight decrease in the measured resistance of the naked microelectrode (without cells), whereas its capacitance remained practically unchanged. The evaluation of resistance and capacitance of a microelectrode covered by a monolayer of IOBA-NHC in relation to a naked microelectrode showed no difference in the standard media (315 mOsm/l), a small difference with 360 mOsm/l, and significant differences with hyperosmolarities of 446 mOsm/l and 610 mOsm/l. The resistance with a confluent cell monolayer is up to three times greater compared to the value of the resistance of the naked electrode with standard media. CONCLUSIONS: Both resistance and capacitance measurements for the cell monolayer were sensitive to changes in osmolarity.
Assuntos
Túnica Conjuntiva/fisiologia , Células Epiteliais/fisiologia , Concentração Osmolar , Células Cultivadas , Impedância Elétrica , Humanos , MicroeletrodosRESUMO
PURPOSE: To evaluate the concentration of tear lysozyme in individuals with Sjogren´s syndrome, meibomian gland dysfunction, and non-dry-eye disease. METHODS: Ninety subjects were recruited for this study, including 30 with Sjogren´s syndrome, 30 with meibomian gland dysfunction, and 30 with non-dry-eye disease. All subjects were referred to participate in the study based on a "dry eye" investigation. They underwent a complete ocular surface ophthalmic examination encompassing ocular surface disease index, biomicroscopy, tear break-up time, Schirmer test type I, conjunctival vital staining with fluorescein and lissamine green, tear lysozyme concentration, and impression cytology. RESULTS: Clinical tests yielded the following results: ocular surface disease index Sjogren´s syndrome: 64.5 ± 22.6 meibomian gland dysfunction: 43.5 ± 21.4, non-dry-eye disease: 6.7 ± 4.3 (p=0.02 between groups); Schirmer I test (mm/5 min): Sjogren´s syndrome: 4.95 ± 2.25, meibomian gland dysfunction: 13.28 ± 1.53, non-dry-eye disease 13.70 ± 1.39 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); tear break-up time (seconds): Sjogren´s syndrome: 3.97 ± 1.47, meibomian gland dysfunction: 3.95 ± 0.86, non-dry-eye disease: 7.25 ± 1.90 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); Lissamine green score: Sjogren´s syndrome-dry-eye: 6.18 ± 2.14, meibomian gland dysfunction-dry-eye: 5.27 ± 1.27, non-dry-eye disease: 1.52 ± 0.97 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); impression cytology score: Sjogren´s syndrome: 1.88 ± 0.92, meibomian gland dysfunction: 1.67 ± 0.56, non-dry-eye: 0.45 ± 0.44 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease) and; tear lysozyme concentration (µg/mL): Sjogren´s syndrome: 751.25 ± 244.73, meibomian gland dysfunction: 1423.67 ± 182.75, non-dry-eye disease: 1409.90 ± 188.21 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 Sjogren´s syndrome vs. meibomian gland dysfunction). CONCLUSION: The concentration of lysozyme in the tears was lower in Sjögren's syndrome patients than in meibomian gland dysfunction and non-dry-eye disease groups. Hence, the lacrimal lysozyme could be considered as a simple, non-invasive, and economical biomarker to differentiate between Sjögren's syndrome dry eye disease and meibomian gland dysfunction dry eye disease.
Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Síndrome de Sjogren , Síndromes do Olho Seco/diagnóstico , Humanos , Glândulas Tarsais , Muramidase , Síndrome de Sjogren/complicações , LágrimasRESUMO
Air pollution is a serious environmental issue worldwide in developing countries' megacities, affecting the population's health, including the ocular surface, by predisposing or exacerbating other ocular diseases. Herpes simplex keratitis (HSK) is caused by the herpes simplex virus type 1 (HSV-1). The primary or recurring infection in the ocular site causes progressive corneal scarring that may result in visual impairment. The present study was designed to study the immunopathological changes of acute HSK under urban polluted air, using the acute HSK model combined with an experimental urban polluted air exposure from Buenos Aires City. We evaluated the corneal clinical outcomes, viral DNA and pro-inflammatory cytokines by RT-PCR and ELISA assays, respectively. Then, we determined the innate and adaptive immune responses in both cornea and local lymph nodes after HSV-1 corneal by immunofluorescence staining and flow cytometry. Our results showed that mice exposed to polluted air develop a severe form of HSK with increased corneal opacity, neovascularization, HSV-1 DNA and production of TNF-α, IL-1ß, IFN-γ, and CCL2. A high number of corneal resident immune cells, including activated dendritic cells, was observed in mice exposed to polluted air; with a further significant influx of bone marrow-derived cells including GR1+ cells (neutrophils and inflammatory monocytes), CD11c+ cells (dendritic cells), and CD3+ (T cells) during acute corneal HSK. Moreover, mice exposed to polluted air showed a predominant Th1 type T cell response over Tregs in local lymph nodes during acute HSK with decreased corneal Tregs. These findings provide strong evidence that urban polluted air might trigger a local imbalance of innate and adaptive immune responses that exacerbate HSK severity. Taking this study into account, urban air pollution should be considered a key factor in developing ocular inflammatory diseases.
Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Ceratite Herpética/etiologia , Ceratite Herpética/patologia , Animais , Biomarcadores , Córnea/imunologia , Córnea/metabolismo , Córnea/patologia , Opacidade da Córnea/diagnóstico por imagem , Opacidade da Córnea/etiologia , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Imunofluorescência , Herpesvirus Humano 1 , Humanos , Imunofenotipagem , Ceratite Herpética/diagnóstico por imagem , Ceratite Herpética/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
OBJECTIVES: The purpose of this study was to explore the clinical relevance of chronic exposure to ambient levels of traffic derived air pollution on the ocular surface. METHODS: A panel study involving 55 volunteers was carried out in São Paulo, Brazil. We measured the mean individual levels of nitrogen dioxide (NO(2)) exposure for 7 days. All subjects answered the Ocular Symptom Disease Index (OSDI) and a symptoms inventory. Subsequently, subjects underwent Schirmer I test, biomicroscopy, vital staining and tear breakup time (TBUT) assessment. Subject's mean daily exposure to NO(2) was categorized in quartiles. Statistical analysis was performed using one-way ANOVA, Tukey HSD and Chi-Square tests. RESULTS: A dose-response pattern was detected between OSDI scores and NO(2) quartiles (p<0.05). There was a significant association between NO(2) quartiles and reported ocular irritation (Chi(2)=9.2, p<0.05) and a significant negative association between TBUT and NO(2) exposure (p<0.05, R=-0.316, Spearman's correlation). There was a significant increase in the frequency of meibomitis in subjects exposed to higher levels of NO(2) (p<0.05). CONCLUSIONS: Subjects exposed to higher levels of traffic derived air pollution reported more ocular discomfort symptoms and presented greater tear film instability, suggesting that the ocular discomfort symptoms and tear breakup time could be used as convenient bioindicators of the adverse health effects of traffic derived air pollution exposure.
Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Oftalmopatias/epidemiologia , Dióxido de Nitrogênio/análise , Emissões de Veículos/análise , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: The basis of retinal detachment repair is sealing the retinal breaks. In order to seal the retinal breaks, chorioretinal adhesion around these lesions has to be achieved. Laser retinopexy is not immediate thus necessitates the use of a temporal endotamponade to maintain both tissues in apposition. We propose the use of a patch of lyophilized human amniotic membrane (LAMPatch) in order to occlude the retinal tear effectively until the chorioretinal adhesion is settled, overcoming the risks and limitations of the current tamponades. METHODS: 23-gauge vitrectomy was performed on eyes with primary retinal detachment with single retinal breaks of less than one-hour extension. A LAMPatch was deployed over the retinal breaks after retina was repositioned with perfluorocarbon. Neither gas nor silicon oil were injected. RESULTS: Six eyes of six patients with total or partial retinal detachment were included. Retinas remained reattached in all cases until the end on follow-up (3, 5 months). Best-corrected visual acuity at 1-week postop was between 20/30 and 20/100. Neither elevations of intraocular pressure, cataracts nor signs of inflammation were registered during follow-up. No second surgeries were needed. CONCLUSION: This technique has proven to be safe and effective in this small case series. No intraocular pressure rise, inflammation or cataracts were registered until last follow-up visit.
RESUMO
Urban air pollution is a serious environmental problem in developing countries worldwide, and health is a pressing issue in the megacities in Latin America. Buenos Aires is a megacity with an estimated moderate Air Quality Index ranging from 42 to 74 µg/m3. Exposure to Urban Air Particles from Buenos Aires (UAP-BA) induces morphological and physiological respiratory alterations; nevertheless, no studies on extrapulmonary organs have been performed. The aim of the present study was to explore the health effects of chronic exposure to UAP-BA (1, 6, 9, and 12 months) on the liver, heart, and serum risk biomarkers. BALB/c mice were exposed to UAP-BA or filtered air (FA) in inhalation chambers, and liver and heart histopathology, oxidative metabolism (superoxide dismutase, SOD; catalase, CAT; lipoperoxidation, TBARS), amino transaminases (AST, ALT) as serum risk biomarkers, alkaline phosphatase (ALP), paraxonase-1 (PON-1), and lipoprotein-associated phospholipase A2 (Lp-PLA2) were evaluated. Chronic exposure to real levels of UAP in Buenos Aires led to alterations in extrapulmonary organs associated with inflammation and oxidative imbalance and to changes in liver and heart risk biomarkers. Our results may reflect the impact of the persistent air pollution in Buenos Aires on individuals living in this Latin American megacity.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Animais , Biomarcadores , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/análiseRESUMO
BACKGROUND: To determine the efficacy of bevacizumab (Avastin), an anti-VEGF monoclonal antibody, administrated via subconjunctival injection as a corneal anti-angiogenic treatment. METHODS: Right corneas of rabbits were infected with herpes simplex virus type 1, KOS strain. On day 13 post-infection (p.i.), animals were treated subconjunctivally (sc) with a single 10-microl dose (25 microg/microl) of bevacizumab (group A) or with the same volume of an isotype monoclonal antibody, as negative control (group B). All animals were observed clinically on days 2, 5, 7, 14, 21, and 28 p.i., and two corneas each day were obtained for histological assessment and viral titration. RESULTS: Viral replication was observed no longer than 5 days after infection. By day 7 a dense neutrophil invasion of the cornea was detected, which significantly increased while herpetic stromal keratitis progressed in severity. Positive outcomes observed following the treatment with bevacizumab, compared to control, included: (1) Total involution of neovascularization, (2) reduction in disease severity, (3) improved corneal translucency, (4) absence of scarring, (5) preservation of corneal thickness, (6) no neutrophil infiltration of the cornea. CONCLUSIONS: Subconjunctival administration of bevacizumab induced involution of new vessels, abolished inflammatory response, and resulted in return of corneal function. Furthermore, bevacizumab is a novel approach for the treatment of herpetic stromal keratitis.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Neovascularização da Córnea/fisiopatologia , Substância Própria/virologia , Ceratite Herpética/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados , Bevacizumab , Cicatriz/prevenção & controle , Túnica Conjuntiva , Córnea/imunologia , Córnea/patologia , Doenças da Córnea/prevenção & controle , Neovascularização da Córnea/imunologia , Neovascularização da Córnea/patologia , Substância Própria/patologia , Progressão da Doença , Injeções , Infiltração de Neutrófilos/efeitos dos fármacos , Coelhos , Indução de Remissão , Índice de Gravidade de Doença , Replicação Viral/efeitos dos fármacosRESUMO
OBJECTIVE: To describe the functional and structural characteristics of the cornea in healthy Guinea pigs. ANIMALS STUDIED: Healthy male and female pigmented and albino Guinea pigs (Caviaporcellus) aged 3-5 months old were used. PROCEDURES: The animals' corneas underwent different in vivo studies including: slit-lamp biomicroscopy, fluorescein staining (FS), break-up time test (BUT), confocal microscopy and pachymetry. The corneas were also studied histopathologically with light microscopy, immunohistochemistry and transmission electron microscopy. RESULTS: No significant differences were found between pigmented and albino animals, male and female, OD and OS in any study performed. The differences on corneal thickness values were not significant among central (227.85 +/- 14.09 microm) and upper and temporal peripheral regions (226.60 +/- 12.50 and 225.70 +/- 14.40 microm, respectively). All histological studies performed permitted identification and precise description of the different corneal structures in Guinea pigs: the stratified epithelium (45.52 +/- 5.26 microm), Bowman's layer (2.23 +/- 0.38 microm), stroma (163.69 +/- 4.90 microm), Descemet's membrane (3.96 +/- 0.46 microm) and the endothelium (5.09 +/- 0.71 microm). Combining results from all eyes mean and SD from corneal BUT values was 4.98 +/- 1.67 s. Corneas often showed discrete superficial erosions being the FS positive in both eyes from all the animals. CONCLUSION: This study provides a detailed in vivo and postfixed histological description of the Guinea pig's cornea and information about the physiological tests.
Assuntos
Córnea/anatomia & histologia , Córnea/fisiologia , Cobaias/anatomia & histologia , Cobaias/fisiologia , Animais , Feminino , Masculino , MicroscopiaRESUMO
Air pollution represents a major health problem in megacities, bringing about 8 million deaths every year. The aim of the study was to evaluate in vivo the ocular and respiratory mucosa biological response after chronic exposure to urban air particles from Buenos Aires (UAP-BA). BALB/c mice were exposed to UAP-BA or filtered air for 1, 6, 9, and 12 months. After exposure, histology, histomorphometry, and IL-6 proinflammatory cytokine level were evaluated in the respiratory and ocular mucosa. Total cell number and differential cell count were determined in the brochoalveolar lavage fluid. In the lung, chronic exposure to UAP-BA induced reduction of the alveolar space, polymorhonuclear cell recruitment, and goblet cell hyperplasia. In the ocular surface, UAP-BA induced an initial mucin positive cells rise followed by a decline through time, while IL-6 level increased at the latest point-time assayed. Our results showed that the respiratory and the ocular mucosas respond differently to UAP-BA. Being that lung and ocular mucosa diseases may be triggered and/or exacerbated by chronic exposure to urban air PM, the inhabitants of Buenos Aires whom are chronically exposed to environmental urban air pollution may be considered a subpopulation at risk. Based on our results, we propose the ocular mucosa as a reliable and more accessible surrogate for pulmonary mucosa environmental toxicity that might also serve as an earlier biomarker for air pollution adverse impact on health.
Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Olho/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mucosa/efeitos dos fármacos , Poluição do Ar/análise , Animais , Argentina , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Olho/patologia , Feminino , Interleucina-6/análise , Interleucina-6/genética , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/efeitos adversos , Material Particulado/análise , Material Particulado/química , Testes de Toxicidade Crônica , UrbanizaçãoRESUMO
Herpes simplex virus type 1 (HSV-1) induces an ocular chronic immunoinflammatory syndrome named herpetic stromal keratitis that can lead to vision impairment and blindness. We have reported that the synthetic brassinosteroid (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one, designated as 2, is a potent antiviral in vitro and reduces the incidence of murine herpetic stromal keratitis, although it does not exert an antiviral effect in vivo. In the present report, we investigated whether brassinosteroid 2 may play a role in the modulation of the response of epithelial and immune cells to HSV-1 infection. Compound 2 blocked HSV-1-induced activation of NF-kappaB by inhibiting its translocation to the nucleus of infected corneal and conjunctival cells in vitro, as well as significantly reduced the secretion of TNF-alpha in infected NHC cells. Conversely, IL-6 production was enhanced by compound 2 after HSV-1 infection in both cell types. The production of these cytokines was considerably reduced in a LPS-stimulated macrophage cell line after treatment with compound 2. In conclusion, brassinosteroid 2 would be playing a modulating effect as an inductor or inhibitor, depending on the cell type involved. The improvement of disease observed in mice could be a balance between both, the immunostimulating and immunosuppressive effects of brassinosteroid 2 in vivo.
Assuntos
Colestanonas/farmacologia , Colestanonas/uso terapêutico , Ceratite Herpética/tratamento farmacológico , Esteroides/farmacologia , Esteroides/uso terapêutico , Animais , Antivirais/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 1/genética , Humanos , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Envelope Viral/genéticaRESUMO
Stromal keratitis resulting from ocular infection with Herpes simplex virus type 1 (HSV-1) is a common cause of blindness. This report investigates the antiviral and anti-inflammatory properties of two new synthetic stigmastane analogs in the experimental model of HSV-1-induced ocular disease in mice. (22S,23S)-22,23-dihydroxystigmast-4-en-3-one (1) and (22S,23S)-22,23-dihydroxystigmasta-1,4-dien-3-one (2) exhibited anti-HSV-1 activity in vitro and ameliorated the signs of murine herpetic stromal keratitis (HSK), although none of the compounds showed antiviral activity in vivo. We discuss that the improvement of HSK could be due to an immunomodulatory effect of both compounds.