Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(14): e202304012, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133488

RESUMO

Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2 O2 ). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2 O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2 O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O2 2- ) and/or cerium-hydroperoxo (Ce-OOH- ) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2 O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2 O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2 O2 .

2.
Langmuir ; 39(23): 8141-8152, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37236227

RESUMO

Functional polymers, such as poly(ethylene glycol) (PEG), terminated with a single phosphonic acid, hereafter PEGik-Ph are often applied to coat metal oxide surfaces during post-synthesis steps but are not sufficient to stabilize sub-10 nm particles in protein-rich biofluids. The instability is attributed to the weak binding affinity of post-grafted phosphonic acid groups, resulting in a gradual detachment of the polymers from the surface. Here, we assess these polymers as coating agents using an alternative route, namely, the one-step wet-chemical synthesis, where PEGik-Ph is introduced with cerium precursors during the synthesis. Characterization of the coated cerium oxide nanoparticles (CNPs) indicates a core-shell structure, where the cores are 3 nm cerium oxide and the shell consists of functionalized PEG polymers in a brush configuration. Results show that CNPs coated with PEG1k-Ph and PEG2k-Ph are of potential interest for applications as nanomedicines due to their high Ce(III) content and increased colloidal stability in cell culture media. We further demonstrate that the CNPs in the presence of hydrogen peroxide show an additional absorbance band in the UV-vis spectrum, which is attributed to Ce-O22- peroxo-complexes and could be used in the evaluation of their catalytic activity for scavenging reactive oxygen species.

3.
Langmuir ; 38(18): 5323-5338, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483044

RESUMO

In this feature article, we provide an overview of our research on statistical copolymers as a coating material for metal oxide nanoparticles and surfaces. These copolymers contain functional groups enabling noncovalent binding to oxide surfaces and poly(ethylene glycol) (PEG) polymers for colloidal stability and stealthiness. The functional groups are organic derivatives of phosphorous acid compounds R-H2PO3, also known as phosphonic acids that have been screened for their strong affinity to metals and for their multidentate binding ability. Herein we develop a polymer-based coating platform that shares features with the self-assembled monolayer (SAM) and layer-by-layer (L-b-L) deposition techniques. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups, the implementation of simple protocols combining versatility with high particle production yields, and the experimental evidence of the colloidal stability of the coated particles. As a demonstration, coating studies are conducted on cerium (CeO2), iron (γ-Fe2O3), aluminum (Al2O3), and titanium (TiO2) oxides of different sizes and morphologies. We finally discuss applications in the domain of nanomaterials and nanomedicine. We evaluate the beneficial effects of coatings on redispersible nanopowders, contrast agents for in vitro/vivo assays, and stimuli-responsive particles.


Assuntos
Disciplinas das Ciências Biológicas , Cério , Nanopartículas Metálicas , Cério/química , Nanopartículas Metálicas/química , Óxidos , Polietilenoglicóis/química , Polímeros/química
4.
Soft Matter ; 18(44): 8514-8519, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36300502

RESUMO

For applications of pulmonary surfactant delivery to the lungs, the question of rheology of the existing clinical formulations is of upmost importance. Recently, Ciutara and Zasadsinky (C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170-5182.) measured the rheological properties of Infasurf®, Survanta® and Curosurf®, three of the most used pulmonary surfactant substitutes. This study revealed that these fluids are shear-thinning and characterized by a yield stress. The results obtained by Ciutara et al. on Curosurf® differ from our results published in L.-P.-A. Thai, F. Mousseau, E. Oikonomou, M. Radiom and J.-F. Berret, Colloids Surf., B, 2019, 178, 337-345. and in L.-P.-A. Thai, F. Mousseau, E. Oikonomou, M. Radiom and J.-F. Berret, ACS Nano, 2020, 14, 466-475. In contrast, we found that Curosurf® suspensions are viscous Newtonian or slightly shear-thinning fluids, with no evidence of yield stress. The purpose of this Comment is to discuss possible causes for the discrepancy between the two studies, and to suggest that for biological fluids such as surfactant substitutes, the microrheology technique of rotational magnetic spectroscopy (MRS) can provide valuable results.


Assuntos
Surfactantes Pulmonares , Surfactantes Pulmonares/química , Viscosidade , Suspensões , Tensoativos , Pulmão
5.
Small ; 17(51): e2102342, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363314

RESUMO

Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.


Assuntos
Cério , Nanopartículas , Oxirredução , Espécies Reativas de Oxigênio
6.
Soft Matter ; 17(37): 8496-8505, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34474458

RESUMO

We investigate the formation/re-dissociation mechanisms of hybrid complexes made from negatively charged PAA2k coated γ-Fe2O3 nanoparticles (NP) and positively charged polycations (PDADMAC) in aqueous solution in the regime of very high ionic strength (I). When the building blocks are mixed at large ionic strength (1 M NH4Cl), the electrostatic interaction is screened and complexation does not occur. If the ionic strength is then lowered down to a targeted ionic strength Itarget, there is a critical threshold Ic = 0.62 M at which complexation occurs, that is independent of the charge ratio Z and the pathway used to reduce salinity (drop-by-drop mixing or fast mixing). If salt is added back up to 1 M, the transition is not reversible and persistent out-of-equilibrium aggregates are formed. The lifetimes of such aggregates depends on Itarget: the closer Itarget to Ic is, the more difficult it is to dissolve the aggregates. Such peculiar behavior is driven by the inner structure of the complexes that are formed after desalting. When Itarget is far below Ic, strong electrostatic interactions induce the formation of dense, compact and frozen aggregates. Such aggregates can only poorly reorganize further on with time, which makes their dissolution upon resalting almost reversible. Conversely, when Itarget is close to Ic more open aggregates are formed due to weaker electrostatic interactions upon desalting. The system can thus rearrange with time to lower its free energy and reach more stable out-of-equilibrium states which are very difficult to dissociate back upon resalting, even at very high ionic strength.

7.
Soft Matter ; 17(32): 7585-7595, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341819

RESUMO

Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards the pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use magnetic wire based microrheology to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 µm in length to a rotating magnetic field is monitored by optical time-lapse microscopy and analyzed using constitutive equations of rheology, including those of Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (3 × 10-3-30 rad s-1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 ± 0.5 Pa and a static viscosity of 100 ± 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.


Assuntos
Magnetismo , Muco , Humanos , Fenômenos Magnéticos , Reologia , Viscosidade
8.
Biotechnol Bioeng ; 117(9): 2827-2841, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542664

RESUMO

We report on the development of a new model of alveolar air-tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40-80 µm at the air-liquid interface by application of air pressure in the range of 200-1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2-10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1-3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.


Assuntos
Fenômenos Biomecânicos/fisiologia , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Alvéolos Pulmonares , Células A549 , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Humanos , Nanofibras , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/fisiologia
9.
Langmuir ; 36(10): 2510-2523, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32050754

RESUMO

In this study, we investigated the thermodynamic features of a system based on oppositely charged polyelectrolytes, sodium alginate, and poly(diallyldimethylammonium chloride) (PDADMAC) at different pH values. Additionally, a comparison of the effects of the thermodynamic parameters on the growth of the layers based on the same polymers is presented. For this investigation, different techniques were combined to compare results from the association in solution and coassembled layers at the silicon surface. Dynamic light scattering (DLS) and isothermal titration calorimetry (ITC) were used for studies in solution, and the layer-by-layer technique was employed for the preparation of the polymer layers. Ellipsometry and atomic force microscopy (AFM) were used to characterize the layer thickness growth as a function of the solution pH, and interferometric confocal microscopy was employed to analyze the topography and roughness of the films. The titration of both polyelectrolytes in two different sequences of additions confirmed the mechanism; it involved a two-step process that was monitored by varying the enthalpy, as determined by ITC experiments, and the structural evolution of the aggregates into coacervates, according to DLS. The primary process is aggregation to form polyelectrolyte complexes having a smaller hydrodynamic diameter, which abruptly transit toward a secondary process because of the formation of coacervate particles that have a larger hydrodynamic diameter. Independent of pH and the sequence of addition, for the first process, both directions are entropically driven. However, the binding enthalpy (ΔHb) decreased with a decrease in the pH of the solution. The layers grown for the PDADMAC/sodium alginate system demonstrated pH sensitivity with either linear or exponential behavior, depending on the pH values of the polyelectrolyte solutions. The more endothermic process at pH 10 afforded layers with a smaller thickness and with linear growth according to the increase in the number of layers from 5 to 20. Decreases in the pH of the solution resulted in the layers growing exponentially; additionally, a decrease in the ΔHb of the association in the solution was observed. The layer thicknesses measured using ellipsometry and AFM data were in good agreement. Additionally, the influence of pH on the roughness and topography of the films was observed. Films from basic dipping solutions resulted in surfaces that were more homogeneous with less roughness; in contrast, films with more layers and those formed in a low-pH dipping solution were rougher and less homogeneous.

10.
Biomacromolecules ; 21(9): 3668-3677, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786728

RESUMO

Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.


Assuntos
Proteínas de Escherichia coli , Fator Proteico 1 do Hospedeiro , DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Soft Matter ; 16(25): 5959-5969, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32542279

RESUMO

Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism.


Assuntos
Modelos Biológicos , Animais , Magnetismo , Camundongos , Microscopia de Contraste de Fase , Células NIH 3T3 , Reologia , Processos Estocásticos , Viscosidade
12.
Nucleic Acids Res ; 45(12): 7299-7308, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28521053

RESUMO

Hfq is a bacterial protein that is involved in several aspects of nucleic acids metabolism. It has been described as one of the nucleoid associated proteins shaping the bacterial chromosome, although it is better known to influence translation and turnover of cellular RNAs. Here, we explore the role of Escherichia coli Hfq's C-terminal domain in the compaction of double stranded DNA. Various experimental methodologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy, isothermal titration microcalorimetry and electrophoretic mobility assays have been used to follow the assembly of the C-terminal and N-terminal regions of Hfq on DNA. Results highlight the role of Hfq's C-terminal arms in DNA binding, change in mechanical properties of the double helix and compaction of DNA into a condensed form. The propensity for bridging and compaction of DNA by the C-terminal domain might be related to aggregation of bound protein and may have implications for protein binding related gene regulation.


Assuntos
DNA Bacteriano/ultraestrutura , DNA/ultraestrutura , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Sítios de Ligação , Cromossomos Bacterianos/química , Cromossomos Bacterianos/metabolismo , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Cinética , Agregados Proteicos , Ligação Proteica , Domínios Proteicos , Termodinâmica
13.
Chemphyschem ; 17(24): 4134-4143, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27860189

RESUMO

Viscoelastic liquids are characterized by a finite static viscosity and a yield stress of zero, whereas soft solids have an infinite viscosity and a non-zero yield stress. The rheological nature of viscoelastic materials has long been a challenge and is still a matter of debate. Here, we provide for the first time the constitutive equations of linear viscoelasticity for magnetic wires in yield-stress materials, together with experimental measurements by using magnetic rotational spectroscopy (MRS). In MRS, the wires were subjected to a rotational magnetic field as a function of frequency and the motion of the wire was monitored by using time-lapse microscopy. The studied soft solids were aqueous dispersions of gel-forming polysaccharide (gellan gum) at concentrations above the gelification point. It was found that soft solids exhibited a clear and distinctive signature compared with viscous and viscoelastic liquids. In particular, the average wire rotation velocity equaled zero over a broad frequency range. We also showed that the MRS technique is quantitative. The equilibrium elastic modulus was retrieved from the wire oscillation amplitudes, and agrees with polymer-dynamics theory.

14.
Soft Matter ; 11(13): 2563-9, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25692605

RESUMO

Dynamics of superparamagnetic rods in crossed constant and alternating magnetic fields as a function of field frequency are studied and it is shown that above the critical value of the amplitude of the alternating field the rod oscillates around the direction of the alternating field. The fit of the experimentally measured time dependence of the mean orientation angle of the rod allows one to determine the ratio of magnetic and viscous torques which act on the rod. The protocol of microrheological measurements consists of recording the dynamics of the orientation of the rod when the magnetic field is applied at an angle to the rod and observing its relaxation due to the accumulated elastic energy after the field is switched off. The microrheological data obtained are in reasonable agreement with the macrorheological measurements.


Assuntos
Imãs , Microtecnologia/métodos , Reologia/métodos , Elasticidade , Eletricidade , Modelos Teóricos , Viscosidade
15.
Soft Matter ; 10(8): 1167-73, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24651977

RESUMO

We demonstrate a simple method for rotational microrheology in complex fluids using micrometric wires. The three-dimensional rotational Brownian motion of the wires suspended in Maxwell fluids is measured from their projection on the focal plane of a microscope. We analyze the mean-squared angular displacement of the wires of length between 1 and 40 µm. The viscoelastic properties of the suspending fluids are examined from this analysis and found to be in good agreement with macrorheology data. Viscosities of simple and complex fluids between 10(-2) and 30 Pa s could be measured. As for the elastic modulus, values up to ∼5 Pa could be determined. This simple technique, allowing for a broad range of probed length scales, opens new perspectives in microrheology of heterogeneous materials such as gels, glasses and cells.


Assuntos
Elasticidade , Micelas , Viscosidade , Reologia , Rotação
16.
J Phys Chem B ; 128(32): 7859-7870, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39102566

RESUMO

In recent years, there has been a renewed interest in complex coacervation, driven by concerted efforts to offer novel experimental and theoretical insights into electrostatic charge-induced association. While previous studies have primarily focused on polyelectrolytes, proteins, or surfactants, our work explores the potential of using cerium (CeO2) and iron (γ-Fe2O3) oxide nanoparticles (NPs) to develop innovative nanomaterials. By combining various charged species, such as polyelectrolytes, charged neutral block copolymers, and coated NPs, we study a wide variety of complexation patterns and compare them using isothermal titration calorimetry, light scattering, and microscopy. These techniques confirm that the titration of oppositely charged species occurs in two steps: the formation of polyelectrolyte complexes and subsequent phase (or microphase) separation, depending on the system studied. Across all examined cases, the entropic contribution to the total free energy surpasses the enthalpic contribution, in agreement with counterion release mechanisms. Furthermore, our investigation reveals a consistent asymmetry in the reaction enthalpy associated with the secondary process, with exothermic profiles observed upon the addition of cationic species to anionic ones and endothermic profiles in the reverse case.

17.
Nanoscale Adv ; 6(6): 1727-1738, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482035

RESUMO

Cellular microrheology has shown that cancer cells with high metastatic potential are softer compared to non-tumorigenic normal cells. These findings rely on measuring the apparent Young's modulus of whole cells using primarily atomic force microscopy. The present study aims to explore whether alternative mechanical parameters have discriminating features with regard to metastatic potential. Magnetic rotational spectroscopy (MRS) is employed in the examination of mammary epithelial cell lines: MCF-7 and MDA-MB-231, representing low and high metastatic potential, along with normal-like MCF-10A cells. MRS utilizes active micron-sized magnetic wires in a rotating magnetic field to measure the viscosity and elastic modulus of the cytoplasm. All three cell lines display viscoelastic behavior, with cytoplasmic viscosities ranging from 10 to 70 Pa s and elastic moduli from 30 to 80 Pa. It is found that the tumorigenic MCF-7 and MDA-MB-231 cells are softer than the MCF-10A cells, with a twofold decrease in the elastic modulus. To differentiate cells with low and high malignancy however, viscosity emerges as the more discriminating parameter, as MCF-7 exhibits a 5 times higher viscosity as compared to MDA-MB-231. These findings highlight the sensitivity of cytoplasmic viscosity to metastatic activity, suggesting its potential use as a mechanical marker for malignant cancer cells.

18.
Toxicol Appl Pharmacol ; 266(2): 276-88, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23142473

RESUMO

This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe(2)O(3) NPs (10 mg kg(-1)) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46±0.02 and 7.41±0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO(2) or [HCO(3)(-)] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35±0.04 and 0.35±0.01 ml min(-1) g(-1), respectively, values which were statistically comparable with controls (0.29±0.02 and 0.33±0.1 ml(-1) min(-1) 25 g(-1)). Mean arterial blood pressure (MAP) decreased 12-24 h after NP injections (111.1±11.5 vs 123.0±6.1 min(-1)) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure.


Assuntos
Resinas Acrílicas/química , Pressão Sanguínea/efeitos dos fármacos , Compostos Férricos/química , Rim/efeitos dos fármacos , Nanopartículas de Magnetita/química , Animais , Feminino , Taxa de Filtração Glomerular , Concentração de Íons de Hidrogênio , Injeções Intravenosas , Rim/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/toxicidade , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Contração Muscular/efeitos dos fármacos , Miografia , Fatores de Tempo , Distribuição Tecidual
19.
Langmuir ; 29(46): 14024-33, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24151925

RESUMO

We report the synthesis of complex salts made from the cationic surfactant dodecyltrimethylammonium and diblock copolymers poly(acrylic acid)-block-poly(acrylamide) of different molecular weights. In water, the complex salts self-assemble into stable hierarchical aggregates with a dense core and a diffuse shell. In contrast to earlier reports, the surfactant/polymer aggregates exhibit a liquid crystalline structure of Pm3n cubic symmetry. The crystal structure is analogous to that obtained with homopolymer. Size and aggregation numbers were estimated from a combination of light and small-angle X-ray scattering experiments. It is found that the size of the aggregates decreases with increasing diblock asymmetry. The complex salt methodology presents many advantages, among which to be insensitive to the preparation conditions and to the mixing pathway.

20.
Environ Pollut ; 327: 121554, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044251

RESUMO

Long term exposure to particulate air pollution is known to increase respiratory morbidity and mortality. In urban areas with dense traffic most of these particles are generated by vehicles, via engine exhaust or wear processes. Non-exhaust particles come from wear processes such as those concerning brakes and their toxicity is little studied. To improve our understanding of the lung toxicity mechanisms of the nanometric fraction of brake wear nanoparticles (BWNPs), we studied whether these particles affect the barrier properties of the respiratory epithelium considering particle translocation, mucus production and repair efficiency. The Calu-3 cell line grown in two-compartment chambers was used to mimic the bronchial epithelial barrier. BWNPs detected by single-particle ICP-MS were shown to cross the epithelial tissue in small amounts without affecting the barrier integrity properties, because the permeability to Lucifer yellow was not increased and there was no cytotoxicity as assessed by the release of lactate-dehydrogenase. The interaction of BWNPs with the barrier did not induce a pro-inflammatory response, but increased the expression and production of MU5AC, a mucin, by a mechanism involving the epidermal growth factor receptor pathway. During a wound healing assay, BWNP-loaded cells exhibited the same ability to migrate, but those at the edge of the wound showed higher 5-ethynyl-2'-deoxyuridine incorporation, suggesting a higher proliferation rate. Altogether these results showed that BW. NPs do not exert overt cytotoxicity and inflammation but can translocate through the epithelial barrier in small amounts and increase mucus production, a key feature of acute inflammatory and chronic obstructive pulmonary diseases. Their loading in epithelial cells may impair the repair process through increased proliferation.


Assuntos
Poluição do Ar , Nanopartículas , Células Epiteliais/metabolismo , Epitélio , Nanopartículas/toxicidade , Poeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA