Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Inorg Chem ; 63(28): 12752-12763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953682

RESUMO

We report the ability to trap the dimer Au2(µ-dppe)2I2 (dppe is 1,2-bis(diphenylphosphino)ethane) with different separations between the three-coordinate gold ions in crystalline solvates. All of these solvates ((Au2(µ-dppe)2I2·4(CH2Cl2) (1), Au2(µ-dppe)2I2·2(CH2Cl2) (2), the polymorphs α-Au2(µ-dppe)2I2·2(HC(O)NMe2) (3) and ß-Au2(µ-dppe)2I2·2(HC(O)NMe2) (4), and Au2(µ-dppe)2I2·4(CHCl3) (5)) along with polymeric {Au(µ-dppe)I}n·n(CHCl3) (6)) originated from the same reaction, only the solvent system used for crystallization differed. In the different solvates of Au2(µ-dppe)2I2, the Au···Au separation varied from 3.192(1) to 3.7866(3) Å. Computational studies undertaken to understand the flexible nature of these dimers indicated that the structural differences were primarily a result of crystal packing effects with aurophillic interactions having a minimal effect.

2.
J Phys Chem A ; 128(20): 4038-4051, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38742806

RESUMO

The catalyzed electrochemical oxidation of ammonia to nitrogen (AOR) is an important fuel-cell half-reaction that underpins a future nitrogen-based energy economy. Our laboratory has reported spontaneous chemical and electrochemical oxidation of ammonia to dinitrogen via reaction of ammonia with the metal-metal bonded diruthenium complex Ru2(chp)4OTf (chp- = 2-chloro-6-hydroxypyridinate, TfO- = trifluoromethanesulfonate). This complex facilitates electrocatalytic ammonia oxidation at mild applied potentials of -255 mV vs ferrocene, which is the [Ru2(chp)4(NH3)]0/+ redox potential. We now report a comprehensive computational investigation of possible mechanisms for this reaction and electronic structure analysis of key intermediates therein. We extend this analysis to proposed second-generation electrocatalysts bearing structurally similar fhp and hmp (2-fluoro-6-hydroxypyridinate and 2-hydroxy-6-methylpyridinate, respectively) equatorial ligands, and we further expand this study from Ru2 to analogous Os2 cores. Predicted M24+/5+ redox potentials, which we expect to correlate with experimental AOR overpotential, depend strongly on the identity of the metal center, and to a lesser degree on the nature of the equatorial supporting ligand. Os2 complexes are easier to oxidize than analogous Ru2 complexes by ∼640 mV, on average. In contrast to mono-Ru catalysts, which oxidize ammonia via a rate-limiting activation of the strong N-H bond, we find lowest-energy reaction pathways for Ru2 and Os2 complexes that involve direct N-N bond formation onto electrophilic intermediates having terminal amido, imido, or nitrido groups. While transition state energies for Os2 complexes are high, those for Ru2 complexes are moderate and notably lower than those for mono-Ru complexes. We attribute these lower barriers to enhanced electrophilicity of the Ru2 intermediates, which is a consequence of their metal-metal bonded structure. Os2 intermediates are found to be, surprisingly, less electrophilic, and we suggest that Os2 complexes may require access to oxidation states higher than Os25+ in order to perform AOR at reasonable reaction rates.

3.
Inorg Chem ; 62(26): 10171-10184, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37345231

RESUMO

Oligo-α-pyridylamides offer an appealing route to polyiron complexes with short Fe-Fe separations and large room-temperature magnetic moments. A derivative of tris(2-aminoethyl)amine (H6tren) containing three oligo-α-pyridylamine branches and 13 nitrogen donors (H6L) reacts with [Fe2(Mes)4] to yield an organic nanocage built up by two tripodal ligands with interdigitated branches (HMes = mesitylene). The nanocage has crystallographic D3 symmetry but hosts a remarkably unsymmetric hexairon-oxo core, with a central Fe5(µ5-O) square pyramid, two oxygen donors bridging basal sites, and an additional Fe center residing in one of the two tren-like pockets. Bond valence sum (BVS) analysis, density functional theory (DFT) calculations, and electrochemical data were then used to establish the protonation state of oxygen atoms and the formal oxidation states of the metals. For this purpose, a specialized set of BVS parameters was devised for Fe2+-N3- bonds with nitrogen donors of oligo-α-pyridylamides. This allowed us to formulate the compound as [Fe6O2(OH)(H3L)L], with nominally four FeII ions and two FeIII ions. Mössbauer spectra indicate that the compound contains two unique FeII sites, identified as a pair of closely spaced hydroxo-bridged metal ions in the central Fe5(µ5-O) pyramid, and a substantially valence-delocalized FeII2FeIII2 unit. Broken-symmetry DFT calculations predict strong ferromagnetic coupling between the two iron(II) ions, leading to a local S = 4 state that persists to room temperature and explaining the large magnetic moment measured at 300 K. The compound behaves as a single-molecule magnet, with magnetization dynamics detectable in zero static field and dominated by an Orbach-like mechanism with activation parameters Ueff/kB = 49(2) K and τ0 = 4(2) × 10-10 s.

4.
Inorg Chem ; 62(11): 4467-4475, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36897254

RESUMO

Synthetic routes to the crystallization of two new box-like complexes, [Au6(Triphos)4(CuBr2)](OTf)5·(CH2Cl2)3·(CH3OH)3·(H2O)4 (1) and [Au6(Triphos)4 (CuCl2)](PF6)5·(CH2Cl2)4 (2) (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine), have been developed. The two centrosymmetric cationic complexes have been structurally characterized through single-crystal X-ray diffraction and shown to contain a CuX2- (X = Br or Cl) unit suspended between two Au(I) centers without the involvement of bridging ligands. These colorless crystals display green luminescence (λem = 527 nm) for (1) and teal luminescence (λem = 464 nm) for (2). Computational results document the metallophilic interactions that are involved in positioning the Cu(I) center between the two Au(I) ions and in the luminescence.

5.
Inorg Chem ; 62(15): 5984-6002, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000941

RESUMO

The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.

6.
J Am Chem Soc ; 144(7): 3259-3268, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133829

RESUMO

Construction of nitrogen-nitrogen triple bonds via homocoupling of metal nitrides is an important fundamental reaction relevant to a potential Nitrogen Economy. Here, we report that room temperature photolysis of Ru2(chp)4N3 (chp- = 2-chloro-6-hydroxypyridinate) in CH2Cl2 produces N2 via reductive coupling of Ru2(chp)4N nitrido species. Computational analysis reveals that the nitride coupling transition state (TS) features an out-of-plane "zigzag" geometry instead of the anticipated planar zigzag TS. However, with intentional exclusion of dispersion correction, the planar zigzag TS geometry can also be found. Both the out-of-plane and planar zigzag TS geometries feature two important types of orbital interactions: (1) donor-acceptor interactions involving intermolecular donation of a nitride lone pair into an empty Ru-N π* orbital and (2) Ru-N π to Ru-N π* interactions derived from coupling of nitridyl radicals. The relative importance of these two interactions is quantified both at and after the TS. Our analysis shows that both interactions are important for the formation of the N-N σ bond, while radical coupling interactions dominate the formation of N-N π bonds. Comparison is made to isoelectronic Ru2-oxo compounds. Formation of an O-O bond via bimolecular oxo coupling is not observed experimentally and is calculated to have a much higher TS energy. The major difference between the nitrido and oxo systems stems from an extremely large driving force, ∼-500 kJ/mol, for N-N coupling vs a more modest driving force for O-O coupling, -40 to -140 kJ/mol.


Assuntos
Complexos de Coordenação/química , Nitrogênio/química , Complexos de Coordenação/efeitos da radiação , Estrutura Molecular , Oxirredução , Fotólise , Rutênio/química , Rutênio/efeitos da radiação , Raios Ultravioleta
7.
Inorg Chem ; 61(16): 6056-6062, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35417163

RESUMO

Reaction of Co(II) nitrate with 2-methylimidazole (2mIm) yields ZIF-67, the structure of which features Co(II) ions in pseudo-tetrahedral coordination geometry. Strong antiferromagnetic interactions between Co(II) ions mediated by the 2mIm ligands lead to antiferromagnetic ordering at 22 K. Postsynthetic treatment of Co(II) ZIF-67 with 5-methyltetrazole (5mT) results in the loss of crystallinity and magnetic order. The local structure of the Co(II) ions was probed by a combination of diffuse-reflectance electronic absorption spectroscopy and Co K-edge X-ray absorption spectroscopy (in the XANES and EXAFS regions). Upon reaction with 5mT, the 4A2(F)-4T1(F) and 4A2(F)-4T1(P) transitions at 1140 and 585 nm, respectively, of the pseudo-tetrahedral Co(II) center in ZIF-67 become less prominent and are replaced by transitions at 990 and 475 nm attributable to the 4T1g(F)-4T2g(F) and 4T1g(F)-4T1g(P) transitions of a pseudo-octahedral Co(II) center, respectively. Furthermore, the 1s-3d pre-edge absorption feature in the Co K-edge XANES spectrum loses intensity during this reaction, and the edge feature becomes more sharp, consistent with a change from pseudo-Td to pseudo-Oh geometry. EXAFS analysis further supports the proposed change in geometry: EXAFS data for ZIF-67 are well fitted to four Co-N scatterers at 1.99 Å, whereas the data for the 5mT-substituted compound are best fitted with 6 Co-N scatterers at 2.14 Å. Our results support the conclusion that a six-coordinate, pseudo-Oh geometry is adopted upon ligand substitution. The increase in coordination number directly increases the Co-N bond distances, which in turn weakens magnetic exchange interactions. No magnetic ordering is found in the 5mT-substituted materials.

8.
Inorg Chem ; 61(38): 15058-15069, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094078

RESUMO

Understanding the fundamental properties governing metal-metal interactions is crucial to understanding the electronic structure and thereby applications of multimetallic systems in catalysis, material science, and magnetism. One such property that is relatively underexplored within multimetallic systems is metal-metal bond polarity, parameterized by the electronegativities (χ) of the metal atoms involved in the bond. In heterobimetallic systems, metal-metal bond polarity is a function of the donor-acceptor (Δχ) interactions of the two bonded metal atoms, with electropositive early transition metals acting as electron acceptors and electronegative late transition metals acting as electron donors. We show in this work, through the preparation and systematic study of a series of Mo2M(dpa)4(OTf)2 (M = Cr, Mn, Fe, Co, and Ni; dpa = 2,2'-dipyridylamide; OTf = trifluoromethanesulfonate) heterometallic extended metal atom chain (HEMAC) complexes that this expected trend in χ can be reversed. Physical characterization via single-crystal X-ray diffraction, magnetometry, and spectroscopic methods as well as electronic structure calculations supports the presence of a σ symmetry 3c/3e- bond that is delocalized across the entire metal-atom chain and forms the basis of the heterometallic Mo2-M interaction. The delocalized 3c/3e- interaction is discussed within the context of the analogous 3c/3e- π bonding in the vinoxy radical, CH2CHO. The vinoxy comparison establishes three predictions for the σ symmetry 3c/3e- bond in HEMACS: (1) an umpolung effect that causes the Mo-M interactions to become more covalent as Δχ increases, (2) distortion of the σ bonding and non-bonding orbitals to emphasize Mo-M bonding and de-emphasize Mo-Mo bonding, and (3) an increase in Mo spin population with increasing Mo-M covalency. In agreement with these predictions, we find that the Mo2···M covalency increases with increasing Δχ of the Mo and M atoms (ΔχMo-M increases as M = Cr < Mn < Fe < Co < Ni), an umpolung of the trend predicted in the absence of σ delocalization. We attribute the observed trend in covalency to the decreased energic differential (ΔE) between the heterometal dz2 orbital and the σ bonding molecular orbital of the Mo2 quadruple bond, which serves as an energetically stable, "ligand"-like electron-pair donor to the heterometal ion acceptor. As M is changed from Cr to Ni, the σ bonding and nonbonding orbitals do indeed distort as anticipated, and the spin population of the outer Mo group is increased by at least a factor of 2. These findings provide a predictive framework for multimetallic compounds and advance the current understanding of the electronic structures of molecular heteromultimetallic systems, which can be extrapolated to applications in the context of mixed-metal surface catalysis and multimetallic proteins.

9.
Inorg Chem ; 61(8): 3443-3457, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175754

RESUMO

Diruthenium paddlewheel complexes supported by electron-rich anilinopyridinate (Xap) ligands were synthesized in the course of the first in-depth structural and spectroscopic interrogation of monocationic [Ru2(Xap)4Cl]+ species in the Ru26+ oxidation state. Despite paramagnetism of the compounds, 1H NMR spectroscopy proved highly informative for determining the isomerism of the Ru25+ and Ru26+ compounds. While most compounds are found to have the polar (4,0) geometry, with all four Xap ligands in the same orientation, some synthetic procedures resulted in a mixture of (4,0) and (3,1) isomers, most notably in the case of the parent compound Ru2(ap)4Cl. The isomerism of this compound has been overlooked in previous reports. Electrochemical studies demonstrate that oxidation potentials can be tuned by the installation of electron donating groups to the ligands, increasing accessibility of the Ru26+ oxidation state. The resulting Ru26+ monocations were found to have the expected (π*)2 ground state, and an in-depth study of the electronic transitions by Vis/NIR absorption and MCD spectroscopies with the aid of TD-DFT allowed for the assignment of the electronic spectra. The empty δ* orbital is the major acceptor orbital for the most prominent electronic transitions. Both Ru25+ and Ru26+ compounds were studied by Ru K-edge X-ray absorption spectroscopy; however, the rising edge energy is insensitive to redox changes in the compounds due to the broad line shape observed for 4d transition metal K-edges. DFT calculations indicate the presence of ligand orbitals at the frontier level, suggesting that further oxidation beyond Ru26+ will be ligand-centered rather than metal-centered.

10.
Chem Rev ; 120(5): 2409-2447, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045223

RESUMO

Significant progress has been made in the past 10-15 years on the design, synthesis, and properties of multimetallic coordination complexes with heterometallic metal-metal bonds that are paramagnetic. Several general classes have been explored including heterobimetallic compounds, heterotrimetallic compounds of either linear or triangular geometry, discrete molecular compounds containing a linear array of more than three metal atoms, and coordination polymers with a heterometallic metal-metal bonded backbone. We focus in this Review on the synthetic methods employed to access these compounds, their structural features, magnetic properties, and electronic structure. Regarding the metal-metal bond distances, we make use of the formal shortness ratio (FSR) for comparison of bond distances between a broad range of metal atoms of different sizes. The magnetic properties of these compounds can be described using an extension of the Goodenough-Kanamori rules to cases where two magnetic ions interact via a third metal atom. In describing the electronic structure, we focus on the ability (or not) of electrons to be delocalized across heterometallic bonds, allowing for rationalizations and predictions of single-molecule conductance measurements in paramagnetic heterometallic molecular wires.

11.
Neurosurg Rev ; 45(3): 2087-2093, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34993690

RESUMO

Hakuba's triangle is a superior cavernous sinus triangle that allows for wide and relatively safe exposure of vascular and neoplastic lesions. This study provides cadaveric measurements of the borders of Hakuba's triangle and describes its neurovascular contents in order to enrich the available literature. The anatomical borders of the Hakuba's triangle (lateral, medial, and posterior borders) were defined based on Hakuba's description and identified. Then the triangle was dissected to reveal its morphology and relationship with adjacent neurovascular structures in Embalmed Caucasian cadaveric specimens. The oculomotor nerve occupied roughly one-third of the area of the triangle and the nerve was more or less parallel to its medial border. The mean lengths of the lateral border, posterior border, and medial border were 17 mm ± 0.5 mm, 12.2 mm ± 0.4 mm, and 10.6 mm ± 0.4 mm, respectively. The mean area of Hakuba's triangle was 63.9 mm2 ± 4.4 mm2. In this study, we provided cadaveric measurements of the borders of Hakuba's triangle along with descriptions of its neurovascular contents.


Assuntos
Seio Cavernoso , Base do Crânio , Cadáver , Artéria Carótida Interna/anatomia & histologia , Seio Cavernoso/anatomia & histologia , Humanos , Base do Crânio/anatomia & histologia , Base do Crânio/cirurgia
12.
Inorg Chem ; 60(21): 16241-16255, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662109

RESUMO

Atom-efficient syntheses of the tetraethylammonium Roussin black sulfur and selenium salts ((Et4N)[Fe4E3(NO)7], E = S, Se) as well as their 15N-labeled counterparts are described herein. Broken-symmetry DFT calculations were conducted on both complexes to model an antiferromagnetic interaction between the apical {FeNO}7 unit, Sap = 3/2, and the three basal {Fe(NO)2}9 units, Sbas = 1/2. The calculated J values are -1813 and -1467 cm-1 for the sulfur and selenium compounds, respectively. The mechanism for antiferromagnetic exchange in both compounds was deduced to be direct exchange on the basis of the partially overlapping magnetic orbitals with orbital density only residing on the Fe-centers. The obtained Mössbauer parameters are most consistent with the calculated MS = 0 broken-symmetry state for both complexes. The values for J have been determined with variable-temperature 15N NMR experiments. Values of -1660 and -1430 cm-1 for the sulfur and selenium compounds, respectively, were obtained by fits to the variable-temperature NMR data, further validating the broken-symmetry MS = 0 model of the electronic structure.

13.
Inorg Chem ; 60(24): 18575-18588, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34431660

RESUMO

Among Earth-abundant catalyst systems, iron-carbene intermediates that perform C-C bond forming reactions such as cyclopropanation of olefins and C-H functionalization via carbene insertion are rare. Detailed descriptions of the possible electronic structures for iron-carbene bonds are imperative to obtain better mechanistic insights and enable rational catalyst design. Here, we report the first square-planar iron-carbene complex (MesPDPPh)Fe(CPh2), where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. The compound was prepared via reaction of the disubstituted diazoalkane N2CPh2 with (MesPDPPh)Fe(thf) and represents a rare example of a structurally characterized, paramagnetic iron-carbene complex. Temperature-dependent magnetic susceptibility measurements and applied-field Mössbauer spectroscopic studies revealed an orbitally near-degenerate S = 1 ground state with large unquenched orbital angular momentum resulting in high magnetic anisotropy. Spin-Hamiltonian analysis indicated that this S = 1 spin system has uniaxial magnetic properties arising from a ground MS = ±1 non-Kramers doublet that is well-separated from the MS = 0 sublevel due to very large axial zero-field splitting (D = -195 cm-1, E/D = 0.02 estimated from magnetic susceptibility data). This remarkable electronic structure gives rise to a very large, positive magnetic hyperfine field of more than +60 T for the 57Fe nucleus along the easy magnetization axis observed by Mössbauer spectroscopy. Computational analysis with complete active space self-consistent field (CASSCF) calculations provides a detailed electronic structure analysis and confirms that (MesPDPPh)Fe(CPh2) exhibits a multiconfigurational ground state. The majority contribution originates from a configuration best described as a singlet carbene coordinated to an intermediate-spin FeII center with a (dxy)2{(dxz),(dz2)}3(dyz)1(dx2-y2)0 configuration featuring near-degenerate dxz and dz2 orbitals.

14.
Neurosurg Rev ; 44(5): 2511-2522, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33409763

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) is an emergent condition requiring rapid intervention and prolonged monitoring. There are few recommendations regarding the management of aSAH in pregnancy. We identified all available literature and compiled management decisions as well as reported outcomes through a systematic literature review without meta-analysis to provide recommendations for management of aSAH during pregnancy. We included a total of 23 articles containing 54 cases of pregnancy-related aSAH in our review. From these reports and other literature, we evaluated information on aSAH pathophysiology, diagnosis, and management with respect to pregnancy. Early transfer to an appropriate facility with neurocritical care, a high-risk obstetric service, and a neurosurgery team available is crucial for the management of aSAH in pregnancy. Intensive monitoring and a multidisciplinary approach remain fundamental to ensure maternal and fetal health.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Feminino , Humanos , Procedimentos Neurocirúrgicos , Gravidez , Hemorragia Subaracnóidea/diagnóstico , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/cirurgia
15.
J Am Chem Soc ; 142(29): 12767-12776, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573220

RESUMO

This work represents an important step in the quest to make heteromultimetallic molecules featuring specific metal types and complicated metal ratios. The rational design, synthesis, and characterization of a complex heterotrimetallic single-source molecular precursor for the next generation sodium-ion battery cathode material, Na2Mn2FeO6, is described. A unique pentametallic platform [MnII(ptac)3-Na-MnIII(acac)3-Na-MnII(ptac)3] (1) was derived from the known polymeric structure of [NaMnII(acac)3]∞, through a series of elaborate design procedures, such as mixed-ligand, unsymmetric ligand, and mixed-valent approaches. Importantly, the application of those techniques results in a molecule with distinctively different transition metal positions in terms of ligand environment and oxidation states. An isovalent substitution of FeIII for the central MnIII ion forms the target heterotrimetallic precursor [MnII(ptac)3-Na-FeIII(acac)3-Na-MnII(ptac)3] (3) with an appropriate metal ratio of Na:Mn:Fe = 2:2:1. The arrangement of metal ions and ligands in this pentametallic assembly was confirmed by single crystal X-ray investigation. The unambiguous assignment of the positions and oxidation states of the Periodic Table neighbors Fe and Mn in 3 has been achieved by a combination of investigative techniques that include synchrotron resonant diffraction, X-ray multiwavelength anomalous diffraction, X-ray fluorescence spectroscopy, Mössbauer spectroscopy, and gas-phase DART mass spectrometry. The heterotrimetallic single-source precursor 3 was shown to exhibit a clean decomposition pattern yielding the phase-pure P2-Na2Mn2FeO6 quaternary oxide with high uniformity of metal ion distribution as confirmed by electron microscopy.

16.
Inorg Chem ; 59(22): 16178-16193, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33141572

RESUMO

Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin (S = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (1-5) have the general formula, [Co(TpPh2)(LX,Y)]n+ (X = O, S; Y = N, O; n = 0 or 1), where TpPh2 is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1-) and LX,Y are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific LX,Y ligands used herein are 4,6-di-tert-butyl substituted o-aminophenolate and o-aminothiophenolate (1 and 2, respectively), o-iminosemiquinonate and o-semiquinonate radicals (3 and 4, respectively), and o-iminobenzoquinone (5). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (1, 2, and 5) possess S = 3/2 ground states with negative D-values (easy-axis anisotropy) of -41, -78, and -30 cm-1, respectively. For 3 and 4, antiferromagnetic coupling between the Co(II) center and o-(imino)semiquinonate radical ligand results in S = 1 ground states that likewise exhibit very large and negative anisotropy (-100 > D > -140 cm-1). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes 1, 2, and 5. Multireference ab initio calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the TpPh2 ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in 3 and 4.

17.
Inorg Chem ; 59(6): 4109-4117, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32096996

RESUMO

The unsymmetrical coordination of gold(I) by 2,2'-bipyridine (bipy) in some planar, three-coordinate cations has been examined by crystallographic and computational studies. The salts [(Ph3P)Au(bipy)]XF6 (X = P, As, Sb) form an isomorphic series in which the differences in Au-N distances range from 0.241(2) to 0.146(2) Å. A second polymorph of [(Ph3P)Au(bipy)]AsF6 has also been found. Both polymorphs exhibit similar structures. The salts [(Et3P)Au(bipy)]XF6 (X = P, As, Sb) form a second isostructural series. In this series the unsymmetrical coordination of the bipy ligand is maintained, but the gold ions are disordered over two unequally populated positions that produce very similar overall structures for the cations. Although many planar, three-coordinate gold(I) complexes are strongly luminescent, the salts [(R3P)Au(bipy)]XF6 (R = Ph or Et; X = P, As, Sb) are not luminescent as solids or in solution. Computational studies revealed that a fully symmetrical structure for [(Et3P)Au(bipy)]+ is 7 kJ/mol higher in energy than the observed unsymmetrical structure and is best described as a transition state between the two limiting unsymmetrical geometries. The Au-N bonding has been examined by natural resonance theory (NRT) calculations using the "12 electron rule". The dominant Lewis structure is one with five lone pairs on Au and one bond to the P atom, which results in a saturated (12 electron) gold center and thereby inhibits the formation of any classical, 2 e- bonds between the gold and either of the bipy nitrogen atoms. The nitrogen atoms may instead donate a lone pair into an empty Au-P antibonding orbital, resulting in a three-center, four-electron (3c/4e) P-Au-N bond. The binuclear complex, [µ2-bipy(AuPPh3)2](PF6)2, has also been prepared and shown to have an aurophillic interaction between the two gold ions, which are separated by 3.0747(3) Å. Despite the aurophillic interaction, this binuclear complex is not luminescent.

18.
Inorg Chem ; 58(4): 2270-2274, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698431

RESUMO

The bis(2-pyridylthio)methanidopalladium(II) pincer complex (1), containing a Pd-C bond, was obtained from the reaction of bis(2-pyridylthio)methane (H2L) with palladium(II) acetate in toluene under reflux. When palladium(II) trifluoroacetate was used, H2L reacted to generate the tetrakis(pyridine-2-thiol)palladium(II) complex (2). Complex 2 was converted to a heterobimetallic palladium(II)-iron(II) paddlewheel complex (3) upon treatment with iron(II) triflate in the presence of a base in acetonitrile at room temperature.

19.
Inorg Chem ; 58(3): 1728-1732, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30649872

RESUMO

Novel mixed-ligand rhodium(II) paddlewheel complexes incorporating tethered axial thioether ligands have been synthesized and characterized. The thioether moiety is essential for high yields and the suppression of byproducts in cyclopropanation reactions using an electron-deficient diazoacetate. Crystal structures, UV-vis analysis, and cyclic voltammetry experiments shed light on the catalytic performance of the complexes.

20.
J Am Chem Soc ; 140(37): 11573-11576, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30176728

RESUMO

Zeolitic imidazolate frameworks (ZIFs) with open-shell transition metal nodes represent a promising class of highly ordered light harvesting antennas for photoenergy applications. However, their charge transport properties within the framework, the key criterion to achieve efficient photoenergy conversion, are not yet explored. Herein, we report the first direct evidence of a charge transport pathway through node-to-node communication in both ground state and excited state ZIFs using the combination of paramagnetic susceptibility measurements and time-resolved optical and X-ray absorption spectroscopy. These findings provide unprecedented new insights into the photoactivity and charge transport nature of ZIF frameworks, paving the way for their novel application as light harvesting arrays in diverse photoenergy conversion devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA