Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(46): 13407-13414, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29058446

RESUMO

The challenge of assembling semiconducting single-wall carbon nanotubes (s-SWCNTs) into densely packed, aligned arrays has limited the scalability and practicality of high-performance nanotube-based electronics technologies. The aligned deposition of s-SWCNTs via floating evaporative self-assembly (FESA) has promise for overcoming this challenge; however, the mechanisms behind FESA need to be elucidated before the technique can be improved and scaled. Here, we gain a deeper understanding of the FESA process by studying a stationary analogue of FESA and optically tracking the dynamics of the organic ink/water/substrate and ink/air/substrate interfaces during the typical FESA process. We observe that the ink/water interface serves to collect and confine the s-SWCNTs before alignment and that the deposition of aligned bands of s-SWCNTs occurs at the ink/water/substrate contact line during the depinning of both the ink/air/substrate and ink/water/substrate contact lines. We also demonstrate improved control over the interband spacing, bandwidth, and packing density of FESA-aligned s-SWCNT arrays. The substrate lift rate (5-15 mm min-1) is used to tailor the interband spacing from 90 to 280 µm while maintaining a constant aligned s-SWCNT bandwidth of 50 µm. Varying the s-SWCNT ink concentration (0.75-10 µg mL-1) allows the control of the bandwidth from 2.5 to 45 µm. A steep increase in packing density is observed from 11 s-SWCNTs µm-1 at 0.75 µg mL-1 to 20 s-SWCNTs µm-1 at 2 µg mL-1, with a saturated packing density of ∼24 s-SWCNTs µm-1. We also demonstrate the scaling of FESA to align s-SWCNTs on a 2.5 × 2.5 cm2 scale while preserving high-quality alignment on the nanometer scale. These findings help realize the scalable fabrication of well-aligned s-SWCNT arrays to serve as large-area platforms for next-generation semiconductor electronics.

2.
ACS Nano ; 18(11): 8259-8269, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437517

RESUMO

High packing density aligned arrays of semiconducting carbon nanotubes (CNTs) are required for many electronics applications. Past work has shown that the accumulation of CNTs at a water-solvent interface can drive array self-assembly. Previously, the confining interface was a large-area, macroscopic feature. Here, we report on the CNT assembly on microscopic water features. Water microdroplets are formed on 10-100 µm wide hydrophilic stripes patterned on a substrate. Exposure to CNTs dispersed in solvent accumulates CNTs at the microdroplet-solvent interface, driving their alignment and deposition at the microdroplet-solvent-substrate contact line. Compared with macroscopic methods in which the contact line uncontrollably moves across the substrate as it is pulled out of the liquids, the hydrophilic patterns and microdroplets allow pinning of the contact line. As CNTs deposit, the contact line self-translates, allowing for dense CNT packing. We realize monolayer CNT arrays aligned within ±3.9° at density of 250 µm-1 and field effect transistors with a high current density of 1.9 mA µm-1 and transconductance of 1.2 mS µm-1 at -0.6 V drain bias and 60 nm channel length.

3.
Nanoscale Adv ; 3(6): 1767-1775, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36132553

RESUMO

Selective deposition of semiconducting carbon nanotubes (s-CNTs) into densely packed, aligned arrays of individualized s-CNTs is necessary to realize their potential in semiconductor electronics. We report the combination of chemical contrast patterns, topography, and pre-alignment of s-CNTs via shear to achieve selective-area deposition of aligned arrays of s-CNTs. Alternate stripes of surfaces favorable and unfavorable to s-CNT adsorption were patterned with widths varying from 2000 nm down to 100 nm. Addition of topography to the chemical contrast patterns combined with shear enabled the selective-area deposition of arrays of quasi-aligned s-CNTs (∼14°) even in patterns that are wider than the length of individual nanotubes (>500 nm). When the width of the chemical and topographical contrast patterns is less than the length of individual nanotubes (<500 nm), confinement effects become dominant enabling the selective-area deposition of much more tightly aligned s-CNTs (∼7°). At a trench width of 100 nm, we demonstrate the lowest standard deviation in alignment degree of 7.6 ± 0.3° at a deposition shear rate of 4600 s-1, while maintaining an individualized s-CNT density greater than 30 CNTs µm-1. Chemical contrast alone enables selective-area deposition, but chemical contrast in addition to topography enables more effective selective-area deposition and stronger confinement effects, with the advantage of removal of nanotubes deposited in spurious areas via selective lift-off of the topographical features. These findings provide a methodology that is inherently scalable, and a means to deposit spatially selective, aligned s-CNT arrays for next-generation semiconducting devices.

4.
Sci Adv ; 7(37): eabh0640, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516885

RESUMO

Semiconducting carbon nanotubes promise faster performance and lower power consumption than Si in field-effect transistors (FETs) if they can be aligned in dense arrays. Here, we demonstrate that nanotubes collected at a liquid/liquid interface self-organize to form two-dimensional (2D) nematic liquid crystals that globally align with flow. The 2D liquid crystals are transferred onto substrates in a continuous process generating dense arrays of nanotubes aligned within ±6°, ideal for electronics. Nanotube ordering improves with increasing concentration and decreasing temperature due to the underlying liquid crystal phenomena. The excellent alignment and uniformity of the transferred assemblies enable FETs with exceptional on-state current density averaging 520 µA µm−1at only −0.6 V, and variation of only 19%. FETs with ion gel top gates demonstrate subthreshold swing as low as 60 mV decade−1. Deposition across a 10-cm substrate is achieved, evidencing the promise of 2D nanotube liquid crystals for commercial semiconductor electronics.

5.
J Acoust Soc Am ; 122(4): EL122-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17902740

RESUMO

The flow inside a thermoacoustic couple is investigated experimentally using particle image velocimetry. Measurements show the oscillation of the shear layers flowing out of a single stack, thus forming an asymmetric vortex street at high driving amplitudes. Development of vortices is also observed within the gap of a thermoacoustic couple. It causes the flow not to repeat from one acoustic period to another. The nonperiodicity of the flow will lead to unsteady heat transfer between the stack and heat exchangers and to the oscillation of the cooling load.

6.
ACS Appl Mater Interfaces ; 7(6): 3782-90, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25614937

RESUMO

Printing of droplets of pure solvents containing suspended solids typically leads to a ring stain due to convective transport of the particles toward the contact line during evaporation of the solvent. In mixtures of volatile solvents, recirculating cells driven by surface tension gradients are established that lead to migration of colloidal particles toward the center of the droplet. In favorable cases, a dense disk of particles forms with a diameter much smaller than that of the droplet. In the latter stages of drying, convective transport of the particles radially toward the contact line still occurs. Two strategies are described to fix the distribution of particles in a compact disk much smaller than the initial diameter of the drying droplet. First, a nanoparticulate clay is added to induce an evaporation-driven sol-gel transition that inhibits convective flow during the latter stages of drying. Second, a nonadsorbing polymer is added to induce depletion flocculation that restricts particle motion after the particles have been concentrated near the center of the droplet. The area of the resulting deposit can be as little as 10% of the footprint of the printed droplet.

7.
ACS Appl Mater Interfaces ; 6(12): 9572-83, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24889140

RESUMO

A ring stain is often an undesirable consequence of droplet drying. Particles inside evaporating droplets with a pinned contact line are transported toward the periphery by radial flow. In this paper, we demonstrate how suspensions of laponite can be used to control the radial flow inside picoliter droplets and produce uniform deposits. The improvement in homogeneity arises from a sol-gel transition during evaporation. Droplets gel from the contact line inward, reducing the radial motion of particles and thus inhibiting the formation of a ring stain. The internal flows and propagation of the gelling front were followed by high-speed imaging of tracer particles during evaporation of the picoliter droplets of water. In the inkjet nozzle, the laponite network is broken down under high shear. Recovery of the low shear viscosity of laponite suspensions was shown to be fast with respect to the lifetime of the droplet, which was instrumental in controlling the deposit morphology. The radial and vertical particle distributions within dried deposits were measured for water droplets loaded with 1 and 5 wt % polystyrene spheres and various concentrations of laponite. Aggregation of the polystyrene spheres was suppressed by the addition of colloidal silica. The formulation can be tuned to vary the deposit profile from a ring to a pancake or a dome.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 026310, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21405909

RESUMO

The present work describes a procedure to calculate the effective diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure. We perform Monte Carlo simulations based on the mean-square displacement method on numerical models of composite materials microstructures. First, computations of the effective diffusivity in the bulk diffusion regime account for the effect of the tortuosity of the geometry on gas diffusion. The Bruggeman equation, which is often used in the literature to relate the effective diffusivity to the porosity of the structure, appears to be inaccurate for porosities ε<0.40. A more accurate correlation for this range of porosities is provided based on the results of our simulations. Second, the Bosanquet equation, which accounts for the effect of pore confinement on gas diffusion, is validated provided that the definition of the Knudsen number is based on the appropriate characteristic length. The procedure to calculate this characteristic length is demonstrated for analytical geometries. However, in practice, geometries obtained from experimental measurements are discrete. For discrete geometries, we show the effect of the resolution of the geometry on the accuracy of the calculation of the effective diffusivity and other properties of the porous material. In addition, the tesselation of solid surfaces affects the calculation of the chord-length distribution regardless of the resolution. This hinders the accurate estimation of the characteristic length necessary to compute the Knudsen number and the effective diffusivity.

9.
Rev Sci Instrum ; 81(1): 015102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113124

RESUMO

A new procedure for the instantaneous correction of the thermal inertia of cold wires operated by a constant-current anemometer is proposed for oscillating flows. The thermal inertia of cold wires depends both on the wire properties and on the instantaneous incident flow velocity. Its correction is challenging in oscillating flows because no relationship between flow velocity and heat transfer around the wire is available near flow reversal. The present correction procedure requires neither calibration data for velocity nor thermophysical or geometrical properties of the wires. The method relies on the splitting of the time lag of cold wires into two factors, which are obtained using a constant-voltage anemometer in the heated mode. The first factor, which is intrinsic to the wire, is deduced from time-constant measurements performed in a low-turbulence flow. The second factor, which depends on the instantaneous flow velocity, is acquired in situ. In oscillating flows, data acquisition can be synchronized with a reference signal so that the same wire is alternatively operated in the cold mode by a constant-current anemometer and in the heated mode by a constant-voltage anemometer. Validation experiments are conducted in an acoustic standing-wave resonator, for which the fluctuating temperature field along the resonator axis is known independently from acoustic pressure measurements, so that comparisons can be made with cold-wire measurements. It is shown that despite the fact that the wire experiences flow reversal, the new procedure recovers accurately the instantaneous temperature of the flow.

10.
Rev Sci Instrum ; 80(4): 045102, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19405686

RESUMO

A constant-voltage anemometer is subject to nonlinear effects when the operating hot wire is exposed to large velocity fluctuations in the incident flow. This results in the generation of undesirable higher harmonics, just as in the two classic systems, constant-current and constant-temperature anemometers, for which no attempts are normally made to correct the nonlinearities. The present investigation shows that these undesirable higher harmonics can be suppressed in the case of a constant-voltage anemometer. A new approach to process experimental data is proposed. It is based on three explicit equations established and solved with all terms included, i.e., without linearization. These are (1) the first-order differential equation that describes the electronic circuit of a constant-voltage anemometer-this equation permits to deduce the instantaneous resistance of the hot wire from the output voltage of the anemometer; (2) the first-order differential equation that expresses the thermal lag behavior of the hot wire when used in a constant-voltage mode-this equation permits to restore the instantaneous resistance that an ideal wire would have without thermal inertia in the same flow conditions; and (3) the algebraic relation that expresses the heat-transfer law of an ideal wire, according to King's law, a look-up table, or a polynomial fit-this relation permits to deduce the instantaneous flow velocity from the instantaneous resistance of the ideal wire. The proposed method is easily implemented on a personal computer and permits odd turbulence moments, such as skewness factors, to be obtained satisfactorily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA