Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell Rep ; 42(3): 629-643, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36695930

RESUMO

KEY MESSAGE: GRF-GIF chimeric proteins from multiple source species enhance in vitro regeneration in both wild and cultivated lettuce. In addition, they enhance regeneration in multiple types of lettuce including butterheads, romaines, and crispheads. The ability of plants to regenerate in vitro has been exploited for use in tissue culture systems for plant propagation, plant transformation, and genome editing. The success of in vitro regeneration is often genotype dependent and continues to be a bottleneck for Agrobacterium-mediated transformation and its deployment for improvement of some crop species. Manipulation of transcription factors that play key roles in plant development such as BABY BOOM, WUSCHEL, and GROWTH-REGULATING FACTORs (GRFs) has improved regeneration and transformation efficiencies in several plant species. Here, we compare the efficacy of GRF-GIF gene fusions from multiple species to boost regeneration efficiency and shooting frequency in four genotypes of wild and cultivated lettuce (Lactuca spp. L.). In addition, we show that GRF-GIFs with mutated miRNA 396 binding sites increase regeneration efficiency and shooting frequency when compared to controls. We also present a co-transformation strategy for increased transformation efficiency and recovery of transgenic plants harboring a gene of interest. This strategy will enhance the recovery of transgenic plants of other lettuce genotypes and likely other crops in the Compositae family.


Assuntos
Agrobacterium , Lactuca , Lactuca/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/genética , Transformação Genética
2.
Phytopathology ; 111(5): 842-849, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141646

RESUMO

Lettuce (Lactuca sativa) is one of the most economically important vegetables in the United States, with approximately 50% of the domestic production concentrated in the Salinas Valley of California. Verticillium wilt, caused by races 1 and 2 of the fungal pathogen Verticillium dahliae, poses a major threat to lettuce production in this area. Although resistance governed by a single dominant gene against race 1 has previously been identified and is currently being incorporated into commercial cultivars, identification of resistance against race 2 has been challenging and no lines with complete resistance have been identified. In this study, we screened germplasm for resistance and investigated the genetics of partial resistance against race 2 using three mapping populations derived from crosses involving L. sativa × L. sativa and L. serriola × L. sativa. The inheritance of resistance in Lactuca species against race 2 is complex but a common quantitative trait locus (QTL) on linkage group 6, designated qVERT6.1 (quantitative Verticillium dahliae resistance on LG 6, first QTL), was detected in multiple populations. Additional race 2 resistance QTLs located in several linkage groups were detected in individual populations and environments. Because resistance in lettuce against race 2 is polygenic with a large genotype by environment interaction, breeding programs to incorporate these resistance genes should be aware of this complexity as they implement strategies to control race 2.


Assuntos
Verticillium , Ascomicetos , Lactuca/genética , Melhoramento Vegetal , Doenças das Plantas , Verticillium/genética
3.
Environ Microbiol ; 21(3): 1019-1034, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623562

RESUMO

Cocoyam (Xanthosoma sagittifolium (L.)), an important tuber crop in the tropics, is severely affected by the cocoyam root rot disease (CRRD) caused by Pythium myriotylum. The white cocoyam genotype is very susceptible while the red cocoyam has some field tolerance to CRRD. Fluorescent Pseudomonas isolates obtained from the rhizosphere of healthy red and white cocoyams from three different fields in Cameroon were taxonomically characterized. The cocoyam rhizosphere was enriched with P. fluorescens complex and P. putida isolates independent of the plant genotype. LC-MS and NMR analyses revealed that 50% of the Pseudomonas isolates produced cyclic lipopeptides (CLPs) including entolysin, lokisin, WLIP, putisolvin and xantholysin together with eight novel CLPs. In general, CLP types were linked to specific taxonomic groups within the fluorescent pseudomonads. Representative CLP-producing bacteria showed effective control against CRRD while purified CLPs caused hyphal branching or hyphal leakage in P. myriotylum. The structure of cocoyamide A, a CLP which is predominantly produced by P. koreensis group isolates within the P. fluorescens complex is described. Compared with the white cocoyam, the red cocoyam rhizosphere appeared to support a more diverse CLP spectrum. It remains to be investigated whether this contributes to the field tolerance displayed by the red cocoyam.


Assuntos
Proteínas de Bactérias/genética , Lipopeptídeos/genética , Peptídeos Cíclicos/genética , Pseudomonas fluorescens/genética , Xanthosoma/microbiologia , Fluorescência , Variação Genética , Pseudomonas fluorescens/isolamento & purificação , Pythium , Rizosfera
4.
BMC Genomics ; 19(1): 851, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486780

RESUMO

BACKGROUND: Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS: We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS: We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.


Assuntos
Adaptação Fisiológica/genética , Genômica , Peronospora/genética , Doenças das Plantas/microbiologia , Heterozigoto , Funções Verossimilhança , Mitocôndrias/genética , Anotação de Sequência Molecular , Peronospora/patogenicidade , Filogenia , Análise de Sequência de RNA , Sequências Repetidas Terminais/genética
5.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454230

RESUMO

Understanding the basis of hybrid vigor remains a key question in crop breeding and improvement, especially for rootstock development where F1 hybrids are extensively utilized. Full-sibling UCB-1 F1 seedling rootstocks are widely planted in commercial pistachio orchards that are generated by crossing 2 highly heterozygous outbreeding parental trees of Pistacia atlantica (female) and P. integerrima (male). This results in extensive phenotypic variability, prompting costly removal of low-yielding small trees. To identify the genetic basis of this variability, we assembled chromosome-scale genome assemblies of the parental trees of UCB-1. We genotyped 960 UCB-1 trees in an experimental orchard for which we also collected multiyear phenotypes. We genotyped an additional 1,358 rootstocks in 6 commercial pistachio orchards and collected single-year tree-size data. Genome-wide single marker association tests identified loci associated with tree size and shape, sex, and precocity. In the experimental orchard, we identified multiple trait-associated loci and a strong candidate for ZZ/ZW sex chromosomes. We found significant marker associations unique to different traits and to early vs late phenotypic measures of the same trait. We detected 2 loci strongly associated with rootstock size in commercial orchards. Pseudo-testcross classification of markers demonstrated that the trait-associated alleles for each locus were segregating in the gametes of opposite parents. These 2 loci interact epistatically to generate the bimodal distribution of tree size with undesirable small trees observed by growers. We identified candidate genes within these regions. These findings provide a foundational resource for marker development and genetic selection of vigorous pistachio UCB-1 rootstock.


Assuntos
Pistacia , Pistacia/genética , Melhoramento Vegetal , Fenótipo , Genótipo
6.
Nat Commun ; 10(1): 2645, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201315

RESUMO

Lettuce downy mildew caused by Bremia lactucae is the most important disease of lettuce globally. This oomycete is highly variable and rapidly overcomes resistance genes and fungicides. The use of multiple read types results in a high-quality, near-chromosome-scale, consensus assembly. Flow cytometry plus resequencing of 30 field isolates, 37 sexual offspring, and 19 asexual derivatives from single multinucleate sporangia demonstrates a high incidence of heterokaryosis in B. lactucae. Heterokaryosis has phenotypic consequences on fitness that may include an increased sporulation rate and qualitative differences in virulence. Therefore, selection should be considered as acting on a population of nuclei within coenocytic mycelia. This provides evolutionary flexibility to the pathogen enabling rapid adaptation to different repertoires of host resistance genes and other challenges. The advantages of asexual persistence of heterokaryons may have been one of the drivers of selection that resulted in the loss of uninucleate zoospores in multiple downy mildews.


Assuntos
Núcleo Celular/genética , Interações Hospedeiro-Patógeno/genética , Lactuca/microbiologia , Oomicetos/genética , Doenças das Plantas/microbiologia , Núcleo Celular/efeitos dos fármacos , Resistência à Doença/genética , Fungicidas Industriais/farmacologia , Genômica , Lactuca/genética , Oomicetos/citologia , Oomicetos/patogenicidade , Seleção Genética/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Virulência/genética
7.
G3 (Bethesda) ; 8(5): 1513-1521, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29511025

RESUMO

CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Padrões de Herança/genética , Lactuca/genética , Proteínas de Plantas/genética , Alelos , Técnicas de Inativação de Genes , Marcadores Genéticos , Células Germinativas/metabolismo , Germinação/genética , Temperatura Alta , Mutação/genética , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA , Transformação Genética
8.
PLoS One ; 9(11): e111750, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372406

RESUMO

Ninety seven Rhizoctonia isolates were collected from different Brassica species with typical Rhizoctonia symptoms in different provinces of Vietnam. The isolates were identified using staining of nuclei and sequencing of the rDNA-ITS barcoding gene. The majority of the isolates were multinucleate R. solani and four isolates were binucleate Rhizoctonia belonging to anastomosis groups (AGs) AG-A and a new subgroup of A-F that we introduce here as AG-Fc on the basis of differences in rDNA-ITS sequence. The most prevalent multinucleate AG was AG 1-IA (45.4% of isolates), followed by AG 1-ID (17.5%), AG 1-IB (13.4%), AG 4-HGI (12.4%), AG 2-2 (5.2%), AG 7 (1.0%) and an unknown AG related to AG 1-IA and AG 1-IE that we introduce here as AG 1-IG (1.0%) on the basis of differences in rDNA-ITS sequence. AG 1-IA and AG 1-ID have not been reported before on Brassica spp. Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on detached leaves of several cabbage species. In in vitro tests on white cabbage and Chinese cabbage, both hosts were severely infected by AG 1-IB, AG 2-2, AG 4-HGI, AG 1-IG and AG-Fc isolates, while under greenhouse conditions, only AG 4-HGI, AG 2-2 and AG-Fc isolates could cause severe disease symptoms. The occurrence of the different AGs seems to be correlated with the cropping systems and cultural practices in different sampling areas suggesting that agricultural practices determine the AGs associated with Brassica plants in Vietnam.


Assuntos
Brassica/microbiologia , Rhizoctonia/classificação , DNA Intergênico , Geografia , Dados de Sequência Molecular , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizoctonia/genética , Vietnã
9.
PLoS One ; 8(12): e85385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386473

RESUMO

It is becoming increasingly evident that interspecific hybridization is a common event in phytophthora evolution. Yet, the fundamental processes underlying interspecific hybridization and the consequences for its ecological fitness and distribution are not well understood. We studied hybridization events in phytophthora clade 8b. This is a cold-tolerant group of plant pathogenic oomycetes in which six host-specific species have been described that mostly attack winter-grown vegetables. Hybrid characterization was done by sequencing and cloning of two nuclear (ITS and Ypt1) and two mitochondrial loci (Cox1 and Nadh1) combined with DNA content estimation using flow cytometry. Three different mtDNA haplotypes were recovered among the presumed hybrid isolates, dividing the hybrids into three types, with different parental species involved. In the nuclear genes, additivity, i.e. the presence of two alleles coming from different parents, was detected. Hybrid isolates showed large variations in DNA content, which was positively correlated with the additivity in nuclear loci, indicating allopolyploid hybridization followed by a process of diploidization. Moreover, indications of homeologous recombination were found in the hybrids by cloning ITS products. The hybrid isolates have been isolated from a range of hosts that have not been reported previously for clade 8b species, indicating that they have novel pathogenic potential. Next to this, DNA content measurements of the non-hybrid clade 8b species suggest that polyploidy is a common feature of this clade. We hypothesize that interspecific hybridization and polyploidy are two linked phenomena in phytophthora, and that these processes might play an important and ongoing role in the evolution of this genus.


Assuntos
Adaptação Fisiológica/fisiologia , Quimera/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Poliploidia , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA