RESUMO
As feral swine (Sus scrofa) populations expand their range and the opportunity for feral swine hunting increases, there is increased potential for disease transmission that may impact humans, domestic swine, and wildlife. From September 2007 to March 2010, in 13 North Carolina, USA, counties and at Howell Woods Environmental Learning Center, we conducted a serosurvey of feral swine for Brucella suis, pseudorabies virus (PRV), and classical swine fever virus (CSFV); the samples obtained at Howell Woods also were tested for porcine circovirus type 2 (PCV-2). Feral swine serum was collected from trapped and hunter-harvested swine. For the first time since 2004 when screening began, we detected B. suis antibodies in 9% (9/98) of feral swine at Howell Woods and <1% (1/415) in the North Carolina counties. Also, at Howell Woods, we detected PCV-2 antibodies in 59% (53/90) of feral swine. We did not detect antibodies to PRV (n=512) or CSFV (n=307) at Howell Woods or the 13 North Carolina counties, respectively. The detection of feral swine with antibodies to B. suis for the first time in North Carolina warrants increased surveillance of the feral swine population to evaluate speed of disease spread and to establish the potential risk to commercial swine and humans.
Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Sus scrofa/sangue , Doenças dos Suínos/epidemiologia , Animais , Animais Selvagens/microbiologia , Animais Selvagens/virologia , Brucella suis/imunologia , Brucelose/epidemiologia , Brucelose/veterinária , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Peste Suína Clássica/epidemiologia , Vírus da Febre Suína Clássica/imunologia , Feminino , Herpesvirus Suídeo 1/imunologia , Masculino , North Carolina/epidemiologia , Pseudorraiva/epidemiologia , Estudos Soroepidemiológicos , SuínosRESUMO
Traditionally, the epidemiology of avian influenza viruses (AIVs) in wild birds has been defined by detection of virus or viral RNA through virus isolation or reverse-transcription polymerase chain reaction. Our goals were to estimate AIV antibody prevalence in Canada geese (Branta canadensis) and measure effects of age and location on these estimates. We collected 3,205 samples from nine states during June and July 2008 and 2009: Georgia, Massachusetts, Minnesota, Mississippi, New Jersey, North Carolina, Pennsylvania, Washington, and West Virginia. Serum samples were tested for AIV antibodies with the use of a commercial blocking enzyme-linked immunosorbent assay. Overall, 483 (15%) Canada geese had detectable antibodies to AIV. Significantly higher prevalences were detected in geese collected from northeastern and upper midwestern states compared with southeastern states. This trend is consistent with results from virus isolation studies reporting AIV prevalence in North American dabbling ducks. Within Pennsylvania, significantly higher antibody prevalences were detected in goose flocks sampled in urban locations compared to flocks sampled in rural areas. Antibody prevalence was significantly higher in after-hatch-year geese compared to hatch-year geese. No significant differences in prevalence were detected from 10 locations sampled during both years. Results indicate that Canada geese are frequently exposed to AIVs and, with resident populations, may potentially be useful as sentinels to confirm regional AIV transmission within wild bird populations.