Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 35(8): 1862-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26088573

RESUMO

OBJECTIVE: Collateral artery growth (arteriogenesis) is an important adaptive response to hampered arterial perfusion. It is unknown whether preventive physical exercise before limb ischemia can improve arteriogenesis and modulate mononuclear cell function. This study aimed at investigating the effects of endurance exercise before arterial occlusion on MNC function and collateral artery growth. APPROACH AND RESULTS: After 3 weeks of voluntary treadmill exercise, ligation of the right femoral artery was performed in mice. Hindlimb perfusion immediately after surgery did not differ from sedentary mice. However, previous exercise improved perfusion restoration ≤7 days after femoral artery ligation, also when exercise was stopped at ligation. This was accompanied by an accumulation of peri-collateral macrophages and increased expression of endothelial nitric oxide synthase and inducible nitric oxide synthase (iNOS) in hindlimb collateral and in MNC of blood and spleen. Systemic monocyte and macrophage depletion by liposomal clodronate but not splenectomy attenuated exercise-induced perfusion restoration, collateral artery growth, peri-collateral macrophage accumulation, and upregulation of iNOS. iNOS-deficient mice did not show exercise-induced perfusion restoration. Transplantation of bone marrow-derived MNC from iNOS-deficient mice into wild-type animals inhibited exercise-induced collateral artery growth. In contrast to sedentary controls, thrice weekly aerobic exercise training for 6 months in humans increased peripheral blood MNC iNOS expression. CONCLUSIONS: Circulating mononuclear cell-derived inducible nitric oxide is an important mediator of exercise-induced collateral artery growth.


Assuntos
Circulação Colateral , Exercício Físico , Isquemia/terapia , Monócitos/metabolismo , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Esforço Físico , Adulto , Animais , Transplante de Medula Óssea , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Modelos Animais de Doenças , Feminino , Membro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/transplante , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Interferência de RNA , Fluxo Sanguíneo Regional , Corrida , Transdução de Sinais , Fatores de Tempo , Transfecção
2.
Biomedicines ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36289897

RESUMO

Pressure-overload-induced cardiac hypertrophy represents one cause of the development of heart failure. The aim of this study is to characterize the influence of the TIR-domain-containing adapter-inducing interferon-ß (TRIF) during afterload-induced myocardial remodeling. After trans-aortic constriction (TAC), cardiac pressure overload leads to an early increase in MyD88- (Myeloid differentiation primary response gene 88) and TRIF-dependent cytokines. The maximum cytokine expression appeared within the first week and decreased to its control level within five weeks. While cardiomyocyte hypertrophy was comparable, the myocardial accumulation of the inflammatory cells was lower in TRIF-/-mice. At d7, TRIF deficiency reduced transcription factors and TRIF-dependent cytokines. Through the modulation of the TGF-ß-signaling pathway and anti-fibrotic microRNAs, TRIF was involved in the development of interstitial fibrosis. The absence of TRIF was associated with a decreased expression of proapoptotic proteins. In echocardiography and working heart analyses, TRIF deficiency slowed left-ventricular wall thickening, myocardial hypertrophy, and reduces the ejection fraction. In summary, TRIF is an important adapter protein for the release of inflammatory cytokines and the accumulation of inflammatory cells in the early stage of maladaptive cardiac remodeling. TRIF is involved in the development of cardiac fibrosis by modulating inflammatory and fibrotic signal transduction pathways.

3.
Biochem Biophys Res Commun ; 397(2): 208-13, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20493167

RESUMO

Inflammation and pro-hypertrophic signaling are important for development and progression of myocardial hypertrophy (LVH) and chronic heart failure (CHF). Here we investigated the relevance of integrin-linked kinase (ILK) for chemokine receptor CXCR4- and angiotensin II type 1-triggered signaling and its regulation and role in cardiac remodeling. Using ELISA, real-time-PCR, and Western blotting, the present study demonstrates that SDF-1 and its receptor CXCR4 are up-regulated in plasma and left ventricles, respectively, in mouse models of cardiac hypertrophy (transaortic constriction, transgenic cardiac-specific overexpression of rac1) and in human CHF in association with increased cardiac ILK-expression. In isolated cardiomyocytes, ILK is activated by CXCR4-ligation and necessary for SDF-1-triggered activation of rac1, NAD(P)H oxidase, and release of reactive oxygen species. Importantly, the pro-hypertrophic peptide angiotensin II induces ILK-activation dependent on rac1 in cardiomyocytes, where ILK is necessary for angiotensin II-mediated stimulation of hypertrophy genes and protein synthesis. We conclude that in both SDF-1- and angiotensin II-triggered signaling, ILK is a central mediator of rac1-induced oxidative stress and myocardial hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores CXCR4/metabolismo , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA