Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682754

RESUMO

Autophagy is an evolutionarily conserved process for the degradation of redundant or damaged cellular material by means of a lysosome-dependent mechanism, contributing to cell homeostasis and survival. Autophagy plays a multifaceted and context-dependent role in cancer initiation, maintenance, and progression; it has a tumor suppressive role in the absence of disease and is upregulated in cancer cells to meet their elevated metabolic demands. Autophagy represents a promising but challenging target in cancer treatment. Green tea is a widely used beverage with healthy effects on several diseases, including cancer. The bioactive compounds of green tea are mainly catechins, and epigallocatechin-gallate (EGCG) is the most abundant and biologically active among them. In this review, evidence of autophagy modulation and anti-cancer effects induced by EGCG treatment in experimental cancer models is presented. Reviewed articles reveal that EGCG promotes cytotoxic autophagy often through the inactivation of PI3K/Akt/mTOR pathway, resulting in apoptosis induction. EGCG pro-oxidant activity has been postulated to be responsible for its anti-cancer effects. In combination therapy with a chemotherapy drug, EGCG inhibits cell growth and the drug-induced pro-survival autophagy. The selected studies rightly claim EGCG as a valuable agent in cancer chemoprevention.


Assuntos
Catequina , Neoplasias , Apoptose , Autofagia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Chá
2.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064250

RESUMO

The members of the Lemur Tyrosine Kinases (LMTK1-3) subfamily constitute a group of three membrane-anchored kinases. They are known to influence a wide variety of key cellular events, often affecting cell proliferation and apoptosis. They have been discovered to be involved in cancer, in that they impact various signalling pathways that influence cell proliferation, migration, and invasiveness. Notably, in the context of genome-wide association studies, one member of the LMTK family has been identified as a candidate gene which could contribute to the development of prostate cancer. In this review, of published literature, we present evidence on the role of LMTKs in human prostate cancer and model systems, focusing on the complex network of interacting partners involved in signalling cascades that are frequently activated in prostate cancer malignancy. We speculate that the modulators of LMTK enzyme expression and activity would be of high clinical relevance for the design of innovative prostate cancer treatment.


Assuntos
Lemur/genética , Neoplasias da Próstata/genética , Proteínas Tirosina Quinases/genética , Animais , Humanos , Masculino , Transdução de Sinais/genética
3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003328

RESUMO

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by the presence of proteinaceous aggregates of αSynuclein (αSyn) in the dopaminergic neurons. Chaperones are key components of the proteostasis network that are able to counteract αSyn's aggregation, as well as its toxic effects. Clusterin (CLU), a molecular chaperone, was consistently found to interfere with Aß aggregation in Alzheimer's Disease (AD). However, its role in PD pathogenesis has yet to be extensively investigated. In this study, we assessed the involvement of CLU in the αSyn aggregation process by using SH-SY5Y cells stably overexpressing αSyn (SH-Syn). First, we showed that αSyn overexpression caused a strong increase in CLU expression without affecting levels of Hsp27, Hsp70, and Hsp90, which are the chaperones widely recognized to counteract αSyn burden. Then, we demonstrated that αSyn aggregation, induced by proteasome inhibition, determines a strong increase of CLU in insoluble aggregates. Remarkably, we revealed that CLU down-regulation results in an increase of αSyn aggregates in SH-Syn without significantly affecting cell viability and the Unfolded Protein Response (UPR). Furthermore, we demonstrated the direct molecular interaction between CLU and αSyn via a co-immunoprecipitation (co-IP) assay. All together, these findings provide incontrovertible evidence that CLU is an important player in the response orchestrated by the cell to cope with αSyn burden.


Assuntos
Clusterina/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Peptídeos beta-Amiloides/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Resposta a Proteínas não Dobradas/genética
4.
Cell Physiol Biochem ; 47(3): 1230-1243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913456

RESUMO

BACKGROUND/AIMS: Dietary polyphenols from green tea have been shown to possess cardio-protective activities in different experimental models of heart diseases and age-related ventricular dysfunction. The present study was aimed at evaluating whether long term in vivo administration of green tea extracts (GTE), can exert positive effects on the normal heart, with focus on the underlying mechanisms. METHODS: The study population consisted of 20 male adult Wistar rats. Ten animals were given 40 mL/day tap water solution of GTE (concentration 0.3%) for 4 weeks (GTE group). The same volume of water was administered to the 10 remaining control rats (CTRL). Then, in vivo and ex vivo measurements of cardiac function were performed in the same animal, at the organ (hemodynamics) and cellular (cardiomyocyte mechanical properties and intracellular calcium dynamics) levels. On cardiomyocytes and myocardial tissue samples collected from the same in vivo studied animals, we evaluated: (1) the intracellular content of ATP, (2) the endogenous mitochondrial respiration, (3) the expression levels of the Sarcoplasmic Reticulum Ca2+-dependent ATPase 2a (SERCA2), the Phospholamban (PLB) and the phosphorylated form of PLB, the L-type Ca2+ channel, the Na+-Ca2+ exchanger, and the ryanodine receptor 2. RESULTS: GTE cardiomyocytes exhibited a hyperdynamic contractility compared with CTRL (the rate of shortening and re-lengthening, the fraction of shortening, the amplitude of calcium transient, and the rate of cytosolic calcium removal were significantly increased). A faster isovolumic relaxation was also observed at the organ level. Consistent with functional data, we measured a significant increase in the intracellular ATP content supported by enhanced endogenous mitochondrial respiration in GTE cardiomyocytes, as well as higher values of the ratios phosphorylated-PLB/PLB and SERCA2/PLB. CONCLUSIONS: Long-term in vivo administration of GTE improves cell mechanical properties and intracellular calcium dynamics in normal cardiomyocytes, by increasing energy availability and removing the inhibitory effect of PLB on SERCA2.


Assuntos
Trifosfato de Adenosina/biossíntese , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Polifenóis/farmacologia , Chá/química , Administração Oral , Animais , Masculino , Miócitos Cardíacos/citologia , Fosforilação/efeitos dos fármacos , Polifenóis/química , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Biochim Biophys Acta ; 1849(1): 44-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464035

RESUMO

The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant. b) CLU 2 is expressed at a low level in normal fibroblasts and virtually absent in prostate cancer cells. c) CLU 1, and to a greater extent CLU 2 expression, increased by AZDC-TSA treatment in prostate cancer cells. d) Both CLU 1 and CLU 2 encode for secreted CLU. e) P2, a novel promoter that overlaps the CLU 2 Transcription Start Site (TSS), drives CLU 2 expression. f) A CpG island, methylated in prostate cancer cells and not in normal fibroblasts, is responsible for long-term heritable regulation of CLU 1 expression. g) ChIP assay of histone tail modifications at CLU promoters (P1 and P2) shows that treatment of prostate cancer cells with AZDC-TSA causes enrichment of Histone3(Lys9)acetylated (H3K9ac) and reduction of Histone3(Lys27)trimethylated (H3K27me3), inducing active transcription of both CLU variants. In conclusion, we show for the first time that the expression of CLU 2 mRNA is driven by a novel promoter, P2, whose activity responds to epigenetic drugs treatment through changes in histone modifications.


Assuntos
Clusterina/biossíntese , Epigênese Genética , Neoplasias da Próstata/genética , RNA Mensageiro/biossíntese , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia
6.
Carcinogenesis ; 35(4): 828-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24343359

RESUMO

Increasing doses of Polyphenon E®, a standardized green tea extract, were given to PNT1a and PC3 prostate epithelial cells mimicking initial and advanced stages of prostate cancer (PCa), respectively. Cell death occurred in both cell lines, with PNT1a being more sensitive [half-maximal inhibitory concentration (IC50) = 35 µg/ml] than PC3 (IC50 = 145 µg/ml) to Polyphenon E®. Cell cycle arrest occurred at G0/G1 checkpoint for PNT1a, and G2/M for PC3 cells. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) occurred in both cell lines, with each exhibiting different timing in response to Polyphenon E®. Autophagy was transiently activated in PNT1a cells within 12 h after treatment as a survival response to overcome ERS; then activation of caspases and cleavage of poly (ADP ribose) polymerase 1 occurred, committing cells to anoikis death. Polyphenon E® induced severe ERS in PC3 cells, causing a dramatic enlargement of the ER; persistent activation of UPR produced strong upregulation of GADD153/CHOP, a key protein of ERS-mediated cell death. Thereafter, GADD153/CHOP activated Puma, a BH3-only protein, committing cells to necroptosis, a programmed caspase-independent mechanism of cell death. Our results provide a foundation for the identification of novel targets and strategies aimed at sensitizing apoptosis-resistant cells to alternative death pathways.


Assuntos
Anoikis/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Retículo Endoplasmático/efeitos dos fármacos , Sequência de Bases , Catequina/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Primers do DNA , Retículo Endoplasmático/metabolismo , Humanos
7.
J Cell Physiol ; 227(5): 1805-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732348

RESUMO

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here, we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G(2)/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.


Assuntos
Núcleo Celular/metabolismo , Clusterina/metabolismo , Interleucinas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Clusterina/genética , Citoesqueleto/metabolismo , Humanos , Interleucinas/genética , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias da Próstata/patologia , Transplante Heterólogo
8.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355510

RESUMO

Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.

9.
Tumour Biol ; 32(5): 1031-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21761117

RESUMO

Understanding the molecular events that lead to paclitaxel (TX) resistance is necessary to identify effective means to prevent chemoresistance. Previously, results from our lab revealed that secretory clusterin (CLU) form positively mediates TX response in ovarian cancer cells. Thus, we had interest to study the role of another non-secreted form (intracellular clusterin (i-CLU)) in chemo-response. Here, we provide evidences that i-CLU form localizes mainly in the nucleus and differentially expressed in the TX-responsive KF cells, versus TX-resistant, KF-TX, ovarian cancer cells and negatively regulate cellular chemo-response. I-CLU was cloned, by deleting the secretion-leading signaling peptide from full-length CLU cDNA, and transiently over-expressed in OVK-18 cells. Forced expression of truncated i-CLU was mainly detectable in the nuclei and significantly reduced cellular growth, accumulating cells in G1 phase which finally died through apoptosis. Importantly, compromised expression of i-CLU under an inducible promoter was tolerated and did not induce apoptosis but sensitized ovarian cancer cells to TX. We then demonstrated that this sensitization mechanism was cell cycle independent and relied on i-CLU/Ku70 binding probably due to controlling the free amount of Ku70 available for DNA repair in the nucleus. Results from CLU immunohistochemistry in ovarian tumor tissues verified the retardation of nuclear CLU staining in the recurrent tumor even though their primary counterparts showed nuclear CLU staining. Thus, the controversial data on CLU function in chemo-response/resistance may be explained by a shift in the pattern of CLU expression and intracellular localization as well when tumor acquires chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Clusterina/biossíntese , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Separação Celular , Clusterina/genética , Regulação para Baixo/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Ovarianas/genética
10.
Nutrients ; 12(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268584

RESUMO

Prostate cancer (PCa) is a multifactorial disease with an unclear etiology. Due to its high prevalence, long latency, and slow progression, PCa is an ideal target for chemoprevention strategies. Many research studies have highlighted the positive effects of natural flavonoids on chronic diseases, including PCa. Different classes of dietary flavonoids exhibit anti-oxidative, anti-inflammatory, anti-mutagenic, anti-aging, cardioprotective, anti-viral/bacterial and anti-carcinogenic properties. We overviewed the most recent evidence of the antitumoral effects exerted by dietary flavonoids, with a special focus on their epigenetic action in PCa. Epigenetic alterations have been identified as key initiating events in several kinds of cancer. Many dietary flavonoids have been found to reverse DNA aberrations that promote neoplastic transformation, particularly for PCa. The epigenetic targets of the actions of flavonoids include oncogenes and tumor suppressor genes, indirectly controlled through the regulation of epigenetic enzymes such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC). In addition, flavonoids were found capable of restoring miRNA and lncRNA expression that is altered during diseases. The optimization of the use of flavonoids as natural epigenetic modulators for chemoprevention and as a possible treatment of PCa and other kinds of cancers could represent a promising and valid strategy to inhibit carcinogenesis and fight cancer.


Assuntos
Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Epigênese Genética/efeitos dos fármacos , Flavonoides/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/prevenção & controle , RNA Neoplásico/biossíntese
11.
Nutrients ; 12(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993022

RESUMO

We recently showed that the long-term in vivo administration of green tea catechin extract (GTE) resulted in hyperdynamic cardiomyocyte contractility. The present study investigates the mechanisms underlying GTE action in comparison to its major component, epigallocatechin-3-gallate (EGCG), given at the equivalent amount that would be in the entirety of GTE. Twenty-six male Wistar rats were given 40 mL/day of a tap water solution with either standardized GTE or pure EGCG for 4 weeks. Cardiomyocytes were then isolated for the study. Cellular bioenergetics was found to be significantly improved in both GTE- and EGCG-fed rats compared to that in controls as shown by measuring the maximal mitochondrial respiration rate and the cellular ATP level. Notably, the improvement of mitochondrial function was associated with increased levels of oxidative phosphorylation complexes, whereas the cellular mitochondrial mass was unchanged. However, only the GTE supplement improved cardiomyocyte mechanics and intracellular calcium dynamics, by lowering the expression of total phospholamban (PLB), which led to an increase of both the phosphorylated-PLB/PLB and the sarco-endoplasmic reticulum calcium ATPase/PLB ratios. Our findings suggest that GTE might be a valuable adjuvant tool for counteracting the occurrence and/or the progression of cardiomyopathies in which mitochondrial dysfunction and alteration of intracellular calcium dynamics constitute early pathogenic factors.


Assuntos
Catequina/farmacologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Proteínas de Ligação ao Cálcio , Catequina/análogos & derivados , Metabolismo Energético , Masculino , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
12.
J Cell Physiol ; 219(2): 314-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19137541

RESUMO

The Clusterin (CLU) gene produces different forms of protein products, which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA targeting all CLU mRNA variants, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e., H3 mRNA, PCNA, and cyclins A, B1, and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin-proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 h. CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, including the nuclear form of CLU (nCLU), and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumor suppressor factor.


Assuntos
Clusterina/metabolismo , Poliubiquitina/metabolismo , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células , Clusterina/genética , Inibidores de Cisteína Proteinase/metabolismo , Inativação Gênica , Humanos , Leupeptinas/metabolismo , Masculino , Neoplasias da Próstata/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Células Tumorais Cultivadas
13.
J Oncol ; 2019: 4081624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885575

RESUMO

Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-κB. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as in vitro and in vivo models of prostate cancer (PCa). Our results demonstrated that (i) CLU expression is significantly downregulated in human PCa and inversely correlates with the expression of p65 in metastases; (ii) CLU overexpression in PCa cells reduces the Ser536 phosphorylation of p65, inhibits NF-κB nuclear translocation, and reduces the transcription of matrix metalloproteinase-9 and metalloproteinase-2 (MMP-9 and MMP-2). Conversely, CLU silencing promotes NF-κB activation and transcriptional upregulation of MMP-9; and (iii) expression and activity of MMP-2 and MMP-9 are increased in CLU-/- mice (CLUKO) and in TRAMP/CLUKO mice in comparison to their relative Clu+/+ littermates. Taken together, our data support the hypothesis that CLU downregulation, an early and relevant event in PCa onset, may inhibit NF-κB activation and limit the execution of a transcriptional program that favor the disease progression towards a metastatic stage.

14.
Cancer Res ; 66(2): 1234-40, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16424063

RESUMO

Green tea catechins (GTCs) proved to be effective in inhibiting cancer growth in several experimental models. Recent studies showed that 30% of men with high-grade prostate intraepithelial neoplasia (HG-PIN) would develop prostate cancer (CaP) within 1 year after repeated biopsy. This prompted us to do a proof-of-principle clinical trial to assess the safety and efficacy of GTCs for the chemoprevention of CaP in HG-PIN volunteers. The purity and content of GTCs preparations were assessed by high-performance liquid chromatography [(-)-epigallocathechin, 5.5%; (-)-epicatechin, 12.24%; (-)-epigallocatechin-3-gallate, 51.88%; (-)-epicatechin-3-gallate, 6.12%; total GTCs, 75.7%; caffeine, <1%]. Sixty volunteers with HG-PIN, who were made aware of the study details, agreed to sign an informed consent form and were enrolled in this double-blind, placebo-controlled study. Daily treatment consisted of three GTCs capsules, 200 mg each (total 600 mg/d). After 1 year, only one tumor was diagnosed among the 30 GTCs-treated men (incidence, approximately 3%), whereas nine cancers were found among the 30 placebo-treated men (incidence, 30%). Total prostate-specific antigen did not change significantly between the two arms, but GTCs-treated men showed values constantly lower with respect to placebo-treated ones. International Prostate Symptom Score and quality of life scores of GTCs-treated men with coexistent benign prostate hyperplasia improved, reaching statistical significance in the case of International Prostate Symptom Scores. No significant side effects or adverse effects were documented. To our knowledge, this is the first study showing that GTCs are safe and very effective for treating premalignant lesions before CaP develops. As a secondary observation, administration of GTCs also reduced lower urinary tract symptoms, suggesting that these compounds might also be of help for treating the symptoms of benign prostate hyperplasia.


Assuntos
Catequina/uso terapêutico , Hiperplasia Prostática/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle , Chá , Administração Oral , Idoso , Catequina/química , Quimioprevenção , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/complicações , Hiperplasia Prostática/patologia , Qualidade de Vida
16.
Nutrients ; 10(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563268

RESUMO

Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Catequina/farmacologia , Metilação de DNA , Humanos , Metaloproteases/metabolismo , Metiltransferases/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/tratamento farmacológico , Fitoterapia , Polifenóis/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Chá/química
17.
Oncol Rep ; 17(6): 1279-90, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17487380

RESUMO

Metastatic progression is the cause of most cancer deaths. Host tumour cell separation (fission) is accompanied by simultaneous acquisition of migrating capability of cancer cells, remodeling of cellular architecture and effective 'homing' in body host environment. Cell remodeling involves cytoskeletal protein-protein and lipid-protein interaction together with altered signaling. Alteration of signaling in tumour cells may affect expression of many genes also by DNA-methylation/demethylation. This would alter the steady-state intracellular level of structural proteins or metabolic enzymes, and notably enzymes involved in the biosynthesis of lipids, affecting the composition of membranes. Lipid rafts are small, heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts can be stabilized to form larger platforms through protein-protein and protein-lipid interactions. Lipid rafts play an important role in intracellular protein transport, membrane fusion and trans-cytosis, also being platforms for cell surface antigens and adhesion molecules which are crucial for cell activation, polarization and signaling. Detachment of individual tumour cells from the host tumour lump requires lipid-protein-lipid raft (LPLR) reordering. Lipid rafts are also involved in angiogenesis and local invasion, which occurs within the host tumour vicinity by exchange of enzymes, cytokines and motility factors that modify the surrounding extracellular matrix (ECM). Many cell surface adhesion, ECM, and signaling proteins (such as E-cadherin, catenin, CD44, MMP-9 and caveolin-1) are known to be absent or reduced following gene promoter-CpG-island hypermethylation in mid-stage growing tumours, but re-expressed (by gene promoter-mCpG-DNA demethylation) in carcinomas such as metastasized lung, prostate and sarcomas. The recent research acquisitions on lipid rafts have tremendous implications in understanding the genetic and biochemical bases of metastatic diffusion of cancer.


Assuntos
Transformação Celular Neoplásica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Microdomínios da Membrana/genética , Proteínas de Membrana/genética , Metástase Neoplásica , Animais , Transformação Celular Neoplásica/genética , Metilação de DNA , Progressão da Doença , Genes Neoplásicos/genética , Humanos , Microdomínios da Membrana/química , Neoplasias/genética , Neoplasias/imunologia , Evasão Tumoral/genética
18.
Pathol Res Pract ; 203(4): 209-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17442502

RESUMO

Human prostatic adenocarcinoma fragments (1-6mm) were cultured on collagen sponges in medium supplemented or not supplemented with 4,5alpha-dihydrotesterone (DHT) until 3 weeks, maintaining the three-dimensional (3D) epithelial and stromal organization present in the tumor in vivo. With time, in the presence of DHT, locally progressive cribriform nests of neoplastic cells with proliferative rates higher than those inside the fragment developed on the surface, while the stroma became more dissociated, and fibrosis replaced the muscular component. The 3D-culture provides a promising approach for studying the development and phenotype of prostate epithelial tumor progenitor cells and their stromal interactions.


Assuntos
Adenocarcinoma/ultraestrutura , Células Epiteliais/ultraestrutura , Técnicas de Cultura de Órgãos , Neoplasias da Próstata/ultraestrutura , Células Estromais/ultraestrutura , Apoptose , Comunicação Celular/fisiologia , Humanos , Masculino
19.
Antioxidants (Basel) ; 6(2)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379200

RESUMO

Green tea catechins (GTCs) are a family of chemically related compounds usually classified as antioxidant molecules. Epidemiological evidences, supported by interventional studies, highlighted a more than promising role for GTCs in human prostate cancer (PCa) chemoprevention. In the last decades, many efforts have been made to gain new insights into the mechanism of action of GTCs. Now it is clear that GTCs' anticancer action can no longer be simplistically limited to their direct antioxidant/pro-oxidant properties. Recent contributions to the advancement of knowledge in this field have shown that GTCs specifically interact with cellular targets, including cell surface receptors, lipid rafts, and endoplasmic reticulum, modulate gene expression through direct effect on transcription factors or indirect epigenetic mechanisms, and interfere with intracellular proteostasis at various levels. Many of the effects observed in vitro are dose and cell context dependent and take place at concentrations that cannot be achieved in vivo. Poor intestinal absorption together with an extensive systemic and enteric metabolism influence GTCs' bioavailability through still poorly understood mechanisms. Recent efforts to develop delivery systems that increase GTCs' overall bioavailability, by means of biopolymeric nanoparticles, represent the main way to translate preclinical results in a real clinical scenario for PCa chemoprevention.

20.
Cancer Res ; 64(17): 6174-82, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342402

RESUMO

Enhanced clusterin gene expression has been related frequently to organ remodeling, tissue involution, and cell death. Whether clusterin represents a leading cause or a consequence of apoptosis induction is still a matter of debate. Clusterin is known as an extracellular secreted glycoprotein in the mature form. However, truncated isoforms of the protein and nuclear localization of clusterin have been described recently in association to cell death. Here, we show the biological effects triggered in PC-3 androgen-independent prostate cancer cells by overexpression of an intracellular, not secreted form of clusterin (intracellular-clusterin). Transient transfection of PC-3 cells with intracellular-clusterin resulted in nuclear localization signal-independent massive nuclear localization of the protein leading to G2-M phase blockade followed by caspase-dependent apoptosis. Constitutive expression of intracellular-clusterin (pFLAG- intracellular-clusterin) in recombinant PC-3 cells caused clonogenic toxicity. The rare pFLAG-intracellular clusterin surviving clones showed inhibition of the proliferation rate and altered phenotype with impaired mitosis and endoreduplication. In these cells, caspase-independent cell death was induced. Impaired cell cycle progression in pFLAG-intracellular-clusterin clones was associated to arrest at the G2-M checkpoint by down-regulation of the mitotic complex cyclin B1/cyclin-dependent kinase 1. Intriguingly, intracellular-clusterin was localized exclusively in the cytoplasm in stably transfected cells, suggesting a negative correlation between nuclear clusterin accumulation and cell survival. These findings may possibly explain the conflicting results obtained in different laboratories, suggesting that clusterin might be a proapoptotic or a survival gene, also opening new perspectives for the characterization of androgen-independent and apoptosis-resistant prostate cancer cells.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Glicoproteínas/fisiologia , Chaperonas Moleculares/fisiologia , Neoplasias da Próstata/patologia , Sequência de Aminoácidos , Sequência de Bases , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Clusterina , Fase G2/fisiologia , Vetores Genéticos/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Masculino , Mitose/fisiologia , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Oligopeptídeos , Peptídeos/genética , Peptídeos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas , Frações Subcelulares/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA