RESUMO
The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Mel , Pólen , Pólen/química , Mel/análise , Cromatografia Líquida de Alta Pressão/métodos , Arábia Saudita , Cromatografia Gasosa-Espectrometria de Massas/métodos , Abelhas , Animais , Fenóis/análiseRESUMO
Circular RNAs (circRNAs) are a class of single-stranded closed non-coding RNA molecules (ncRNAs), which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, an interest in understanding their regulatory importance is rather recent. High stability, abundance and evolutionary conservation among species underline some of their important traits. CircRNAs perform a variety of cellular functions ranging from miRNA and proteins sponges to transcriptional modulation and splicing. Additionally, most circRNAs are expressed aberrantly in pathological conditions suggesting their possible exploitation as diagnostic biomarkers. Their covalent closed cyclic structure resulting in resistance to RNases further makes them suitable as cancer biomarkers. Studies involving human tumors have verified differences in the expression profiles of circRNAs, indicating a regulatory role in cancer pathogenesis and metastasis. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion. Further, some circRNAs located in the nucleus can regulate transcription of genes by binding to RNA polymerase II. In this review, we elaborate the characteristics, functions and mechanisms of action of circRNAs in cancer. We also discuss the possibility of using circRNAs as potential therapeutic targets and biomarkers for cancer.
Assuntos
MicroRNAs , Neoplasias , Biomarcadores , Biomarcadores Tumorais/genética , Núcleo Celular , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , RNA Circular/genéticaRESUMO
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genéticaRESUMO
In the last few decades, the search for metal nanoparticles as an alternative to cancer treatments and antibiotics has increased. In this article, the spectroscopic (ultraviolet-visible (UV-vis), electron-dispersing X-ray (EDX), and Fourier transform infrared (FT-IR)), microscopic (field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and atomic force microscope (AFM)), structural (X-ray diffractometer (XRD) and zetasizer), and analytic (thermogravimetric/differential thermal analyzer (TGA-DTA)) characterization of the silver nanoparticles (AgNPs) produced from Papaver rhoeas (PR) L. leaf extract are presented. PR-AgNPs are generally spherical and have a maximum surface plasmon resonance of 464.03 nm. The dimensions of the manufactured nanomaterial are in the range of 1.47-7.31 nm. PR-AgNPs have high thermal stability and a zeta potential of -36.1 mV. The minimum inhibitory concentration (MIC) values (mg L-1) of PR-AgNPs on Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans are 1.50, 0.75, 3.00, 6.00, and 0.37, respectively. In the study, the cytotoxic and proliferative effects of PR-AgNPs using the MTT (3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide) method on various cancer cell lines (CACO-2 (human colon adenocarcinoma cell), MCF-7 (human breast cancer cell), T98-G (glioblastoma multiforme cell), and healthy HUVEC (human umbilical vein endothelial cell)) cell lines are presented. After 24 and 48 h of the application, the half-maximum inhibitory concentration (IC50) values (µg mL-1) of PR-AgNPs on HUVEC, CACO-2, MCF-7, and T98-G lines are 2.365 and 2.380; 2.526 and 2.521; 3.274 and 3.318; 3.472 and 3.526, respectively. Comprehensive in vivo research of PR-AgNPs is proposed to reveal their potential for usage in sectors such as nanomedicine and nanochemistry.
Assuntos
Adenocarcinoma , Anti-Infecciosos , Antineoplásicos , Neoplasias do Colo , Nanopartículas Metálicas , Papaver , Humanos , Prata , Células CACO-2 , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologiaRESUMO
The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Allium cepa (yellowish peel) and the evaluation of its antimicrobial, antioxidant, and anticholinesterase activities. For the synthesis of AgNPs, peel aqueous extract (200 mL) was treated with a 40 mM AgNO3 solution (200 mL) at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at ~439 nm was the sign that AgNPs were present in the reaction solution. UV-vis, FE-SEM, TEM, EDX, AFM, XRD, TG/DT analyses, and Zetasizer techniques were used to characterize the biosynthesized nanoparticles. The crystal average size and zeta potential of AC-AgNPs with predominantly spherical shapes were measured as 19.47 ± 1.12 nm and -13.1 mV, respectively. Pathogenic microorganisms Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were used for the Minimum Inhibition Concentration (MIC) test. When compared to tested standard antibiotics, AC-AgNPs demonstrated good growth inhibitory activities on P. aeuruginosa, B. subtilis, and S. aureus strains. In vitro, the antioxidant properties of AC-AgNPs were measured using different spectrophotometric techniques. In the ß-Carotene linoleic acid lipid peroxidation assay, AC-AgNPs showed the strongest antioxidant activity with an IC50 value of 116.9 µg/mL, followed by metal-chelating capacity and ABTS cation radical scavenging activity with IC50 values of 120.4 µg/mL and 128.5 µg/mL, respectively. The inhibitory effects of produced AgNPs on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were determined using spectrophotometric techniques. This study provides an eco-friendly, inexpensive, and easy method for the synthesis of AgNPs that can be used for biomedical activities and also has other possible industrial applications.
Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/química , Staphylococcus aureus , Inibidores da Colinesterase/farmacologia , Prata/química , Cebolas , Nanopartículas Metálicas/química , Butirilcolinesterase/farmacologia , Acetilcolinesterase/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/químicaRESUMO
The problem of antimicrobial resistance is an important global public health challenge. We propose that a development of new antibiotic compounds around known natural substances is a solution to this problem. We investigate reengineer natural products into potent antibiotics. Uracil fragment is abundant in nature and significant to treat infectious diseases due to its affection to the replication of the bacterial chromosome. 12 new uracil S-derivatives were obtained and tested for their in vitro antimicrobial properties. N3 -(thietan-3-yl)- and N3 -(1,1-dioxothietan-3-yl)uracils derivatives were synthesized by thietanylation of 6-methyluracil with 2-chloromethylthiirane and subsequent oxidation of the thietan ring. A method of their alkylation with ethyl-2-chloroacetate was developed and acetohydrazides containing 3-(thietan-3-yl)- and 3-(1,1-dioxothietan-3-yl)uracilyls fragments in the acetyl group were obtained by hydrazinolysis of 2-(thietanyluracil-1-yl)acetic acid ethyl esters. Their interaction with ß-dicarbonyl compounds, anhydride of mono- and dicarboxylic acids was studied. Antimicrobial activity was determined by the agar diffusion method on test organisms: S. aureus, E. coli, P. vulgaris, K. pneumoniae, C. diversus, E. aerogenes, P. aeruginosa, S. abosit. N-acyl-5-hydroxypyrazolines and N,N'-diacylhydrazines of 6-methyluracil thietanyl- and dioxothietanyl derivatives showed high antimicrobial activity, which is consistent with the results of structure activity relationship analysis (MIC 0.1-10 µg/ml).
Assuntos
Anti-Infecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Uracila/química , Uracila/farmacologiaRESUMO
Acute ischemic stroke (AIS) continues to be one of the most important medical and social problems in our country. Carotid endarterectomy (CEA) is the standard and effective surgical treatment for AIS prevention in patients with significant carotid artery stenosis. Even though CEA is a safe procedure when performed by an experienced surgeon, it is still associated with risks of operative complications inherent to any surgical intervention. Therefore, immediate postoperative appropriate adjuvant or neurological salvage therapy for AIS patients after CEA is necessary. In this study,we report three patients in our institution who received immediate post-operative interventional therapy for neurological salvage, in the setting of cerebral embolism after CEA.
Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , AVC Isquêmico , Acidente Vascular Cerebral , Tromboembolia , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Endarterectomia das Carótidas/efeitos adversos , Endarterectomia das Carótidas/métodos , Humanos , Estudos Retrospectivos , Terapia de Salvação/efeitos adversos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Resultado do TratamentoRESUMO
Intracranial aneurysm (IA) is an abnormal focal dilation of an artery in the brain that results from a weakening of the inner muscular layer of a blood vessel wall. IAs represent the most common etiology of nontraumatic subarachnoid hemorrhage (SAH). Despite technological advances in the treatment and use of new diagnostic methods for IAs, they continue to pose a significant risk of mortality and disability. Thus, early recognition of IA with a high risk of rupture is crucial for the stratification of patients with such a formidable disease. MicroRNAs (miRNA) are endogenous noncoding RNAs of 18-22 nucleotides that regulate gene expression at the post-transcriptional level through interaction with 3'-untranslated regions (3'UTRs) of the target mRNAs. MiRNAs are involved in the pathogenesis of IAs, including in the mechanisms of formation, growth, and rupture. It is known that in many biological fluids of the human body, such as blood or cerebrospinal fluid (CSF), numerous miRNAs, called circulating miRNAs, have been detected. The expression profile of circulating miRNAs represents a certain part of the cells in which they are modified and secreted in accordance with the physiological or pathological conditions of these cells. Circulating miRNAs can be secreted from cells into human biological fluids in extracellular vesicles or can be bound to Ago2 protein, which makes them resistant to the effects of RNAse. Therefore, circulating miRNAs are considered as new potential biomarkers of interest in many diseases, including IA.
Assuntos
Aneurisma Intracraniano , MicroRNAs , Biomarcadores , Humanos , Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/genética , MicroRNAs/genética , Prognóstico , RNA MensageiroRESUMO
Microglia-mediated central nervous system (CNS) inflammation is one of the key features of various neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. In the last few years, a number of studies have investigated the link between neurodegenerative diseases and CNS glial cells, in particular microglia. Microglial cells are the main resident immune cells and comprise approximately 10-15% of all CNS cells. Microglia at rest regulates CNS homeostasis via phagocytic activity, by removing pathogens and cell detritus. "Resting" microglia cells transform into an activated form and produce inflammatory mediators, thus protecting neurons and providing defense against invading pathogens. Excessive inflammation leads to neuronal damage and neurodegenerative diseases. Various microglial reactions at different stages of the disease can open up new directions for treatment interventions and modification of the inflammatory activity. This review focuses on the potential role of microglia and the dynamic M1/M2 phenotype changes that are critically linked to certain neurodegenerative diseases.
Assuntos
Doença de Alzheimer , Microglia , Sistema Nervoso Central , Humanos , InflamaçãoRESUMO
Pituitary adenoma (PA) accounts for 10-15% of all intracranial neoplasms. Even though most pituitary adenomas are benign, it is known that almost 35% of them exhibit an aggressive clinical course, including rapid proliferative activity and invasion of neighboring tissues. MicroRNAs (miRNAs) are short single-stranded RNA molecules that can influence post-transcriptional regulation by controlling target genes. Based on research data on miRNAs over the past 20 years, more than 60% of genes encoding human proteins are regulated by miRNAs, which ultimately control basic cellular mechanisms, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNAs has been observed in a number of diseases, especially tumors like PA. A majority of miRNAs are expressed within the cells themselves. However, the circulating miRNAs can be detected in several biological fluids of the human body. The identification of circulating miRNAs as new molecular markers may increase the ability to detect a tumor, predict the course of a disease, plan to choose suitable treatment, and diagnose at the earliest signs of impending neoplastic transformation. Therapy of PAs with aggressive behavior is a complex task. When surgery and chemotherapy fail, radiotherapy becomes the treatment of choice against PAs. Therefore, the possibility of implementing circulating miRNAs as innovative diagnostic and therapeutic agents for PA is one of the main exciting ideas.
Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias Hipofisárias/genética , Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/patologiaRESUMO
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Assuntos
Isquemia Encefálica/diagnóstico , Isquemia Encefálica/metabolismo , AVC Isquêmico/diagnóstico , MicroRNAs/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , AVC Isquêmico/metabolismoRESUMO
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
RESUMO
Hypertension (HTN) is a leading risk factor for cardiovascular diseases (CVDs) and a major contributor to global morbidity and mortality. Conventional pharmacological treatments have been effective but are often accompanied by side effects and do not address all pathological aspects of the disease. Recent advances in molecular biology have identified non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as key regulators in the pathogenesis of hypertension. These ncRNAs influence various cellular processes, such as gene expression, vascular tone, and inflammation, making them promising targets for therapeutic intervention. This review explores the potential of polyphenols, a diverse group of phytochemicals with potent antioxidant and anti-inflammatory properties, in modulating ncRNA expression and function. We discuss how polyphenols, such as epigallocatechin-3-gallate (EGCG), resveratrol, curcumin, and quercetin impact the regulation of ncRNAs, particularly focusing on their roles in reducing oxidative stress, improving endothelial function, and ameliorating vascular remodeling associated with hypertension. The review synthesizes current evidence from both in vitro and in vivo studies, highlighting significant findings and the mechanisms by which polyphenols exert their effects on ncRNA-mediated pathways. Moreover, we address the challenges of translating these findings into clinical applications, including issues related to bioavailability, dosing, and the complex interactions of polyphenols with other cellular components. Future directions for research are suggested, with an emphasis on the need for comprehensive clinical trials to establish the efficacy of polyphenol-based therapies targeting ncRNAs in hypertension management. By targeting ncRNAs, polyphenols offer a novel therapeutic strategy that could enhance the treatment landscape for hypertension and potentially other cardiovascular conditions.
RESUMO
Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.
RESUMO
An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in- -depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.
RESUMO
The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.
RESUMO
Circular RNAs (circRNAs) is a fascinating covalently closed circular non-coding RNA that is abundantly present in the transcriptome of eukaryotic cells. Its versatile nature allows it to participate in a multitude of pathological and physiological processes within the organism. One of its crucial functions is acting as a microRNA sponge, modulating protein transcription levels, and forming interactions with essential RNA-binding proteins. Remarkably, circRNAs demonstrates a specific enrichment in various vital areas of the brain, including the cortex, hippocampus, white matter, and photoreceptor neurons, particularly in aging organisms. This intriguing characteristic has led scientists to explore its potential as a significant biological marker of neurodegeneration, offering promising insights into neurodegenerative diseases like Alzheimer's disease (AD). In AD, there has been an interesting observation of elevated levels of circRNAs in both peripheral blood and synaptic terminals of affected individuals. This intriguing finding raises the possibility that circRNAs may have a central role in the initiation and progression of AD. Notably, different categories of circRNAs, including HDAC9, HOMER1, Cwc27, Tulp4, and PTK2, have been implicated in driving the pathological changes associated with AD through diverse mechanisms. For instance, these circRNAs have been demonstrated to contribute to the accumulation of beta-amyloid, which is a hallmark characteristic of AD. Additionally, these circRNAs contribute to the excessive phosphorylation of tau protein, a phenomenon associated with neurofibrillary tangles, further exacerbating the disease. Moreover, they are involved in aggravating neuroinflammation, which is known to play a critical role in AD's pathogenesis. Lastly, these circRNAs can cause mitochondrial dysfunction, disrupting cellular energy production and leading to cognitive impairment. As researchers delve deeper into the intricate workings of circRNAs, they hope to unlock its full potential as a diagnostic tool and therapeutic target for neurodegenerative disorders, paving the way for innovative treatments and better management of such devastating conditions.
RESUMO
Background: Intracranial aneurysms (IAs) represent protrusions in the vascular wall, with their growth and wall thinning influenced by various factors. These processes can culminate in the rupture of the aneurysm, leading to subarachnoid hemorrhage (SAH). Unfortunately, over half of the patients prove unable to withstand SAH, succumbing to adverse outcomes despite intensive therapeutic interventions, even in premier medical facilities. This study seeks to discern the pivotal microRNAs (miRNAs) and genes associated with the formation and progression of IAs. Methods: The investigation gathered expression data of miRNAs (from GSE66240) and mRNAs (from GSE158558) within human aneurysm tissue and superficial temporal artery (STA) samples, categorizing them into IA and normal groups. This classification was based on the Gene Expression Omnibus (GEO) database. Results: A total of 70 differentially expressed microRNAs (DEMs) and 815 differentially expressed mRNAs (DEGs) were pinpointed concerning IA. Subsequently, a miRNA-mRNA network was constructed, incorporating 9 significantly upregulated DEMs and 211 significantly downregulated DEGs. Simultaneously, functional enrichment and pathway analyses were conducted on both DEMs and DEGs. Through protein-protein interaction (PPI) network analysis and functional enrichment, 9 significantly upregulated DEMs (hsa-miR-188-5p, hsa-miR-590-5p, hsa-miR-320b, hsa-miR-423-5p, hsa-miR-140-5p, hsa-miR-486-5p, hsa-miR-320a, hsa-miR-342-3p, and hsa-miR-532-5p) and 50 key genes (such as ATP6V1G1, KBTBD6, VIM, PA2G4, DYNLL1, METTL21A, MDH2, etc.) were identified, suggesting their potential significant role in IA. Among these genes, ten were notably negatively regulated by at least two key miRNAs. Conclusions: The findings of this study provide valuable insights into the potential pathogenic mechanisms underlying IA by elucidating a miRNA-mRNA network. This comprehensive approach sheds light on the intricate interplay between miRNAs and genes, offering a deeper understanding of the molecular dynamics involved in IA development and progression.
RESUMO
Brain metastases represent a formidable challenge in cancer management, impacting a significant number of patients and contributing significantly to cancer-related mortality. Conventional diagnostic methods frequently fall short, underscoring the imperative for non-invasive alternatives. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), present promising avenues for exploration. These ncRNAs exert influence over the prognosis and treatment resistance of brain metastases, offering valuable insights into underlying mechanisms and potential therapeutic targets. Dysregulated ncRNAs have been identified in brain metastases originating from various primary cancers, unveiling opportunities for intervention and prevention. The analysis of ncRNA expression in bodily fluids, such as serum and cerebrospinal fluid, provides a noninvasive means to differentiate brain metastases from primary tumors. NcRNAs, particularly miRNAs, assume a pivotal role in orchestrating the immune response within the brain microenvironment. MiRNAs exhibit promise in diagnosing brain metastases, effectively distinguishing between normal and cancer cells, and pinpointing the tissue of origin for metastatic brain tumors. The manipulation of miRNAs holds substantial potential in cancer treatment, offering the prospect of reducing toxicity and enhancing efficacy. Given the limited treatment options and the formidable threat of brain metastases in cancer patients, non-coding RNAs, especially miRNAs, emerge as beacons of hope, serving as both diagnostic tools and therapeutic targets. Further clinical studies are imperative to validate the specificity and sensitivity of ncRNAs, potentially reshaping approaches to tackle this challenge and elevate treatment outcomes for affected patients.
RESUMO
BACKGROUND: Glioblastoma is the most common type of brain cancer, with a prognosis that is unfortunately poor. Despite considerable progress in the field, the intricate molecular basis of this cancer remains elusive. AIM: The aim of this study was to identify genetic indicators of glioblastoma and reveal the processes behind its development. OBJECTIVE: The advent and integration of supercomputing technology have led to a significant advancement in gene expression analysis platforms. Microarray analysis has gained recognition for its pivotal role in oncology, crucial for the molecular categorization of tumors, diagnosis, prognosis, stratification of patients, forecasting tumor responses, and pinpointing new targets for drug discovery. Numerous databases dedicated to cancer research, including the Gene Expression Omnibus (GEO) database, have been established. Identifying differentially expressed genes (DEGs) and key genes deepens our understanding of the initiation of glioblastoma, potentially unveiling novel markers for diagnosis and prognosis, as well as targets for the treatment of glioblastoma. METHODS: This research sought to discover genes implicated in the development and progression of glioblastoma by analyzing microarray datasets GSE13276, GSE14805, and GSE109857 from the GEO database. DEGs were identified, and a function enrichment analysis was performed. Additionally, a protein-protein interaction network (PPI) was constructed, followed by module analysis using the tools STRING and Cytoscape. RESULTS: The analysis yielded 88 DEGs, consisting of 66 upregulated and 22 downregulated genes. These genes' functions and pathways primarily involved microtubule activity, mitotic cytokinesis, cerebral cortex development, localization of proteins to the kinetochore, and the condensation of chromosomes during mitosis. A group of 27 pivotal genes was pinpointed, with biological process analysis indicating significant enrichment in activities, such as division of the nucleus during mitosis, cell division, maintaining cohesion between sister chromatids, segregation of sister chromatids during mitosis, and cytokinesis. The survival analysis indicated that certain genes, including PCNA clamp-associated factor (PCLAF), ribonucleoside- diphosphate reductase subunit M2 (RRM2), nucleolar and spindle-associated protein 1 (NUSAP1), and kinesin family member 23 (KIF23), could be instrumental in the development, invasion, or recurrence of glioblastoma. CONCLUSION: The identification of DEGs and key genes in this study advances our comprehension of the molecular pathways that contribute to the oncogenesis and progression of glioblastoma. This research provides valuable insights into potential diagnostic and therapeutic targets for glioblastoma.