Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Methods ; 226: 120-126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641083

RESUMO

The CRISPR/Cas9 genome editing technology has transformed basic and translational research in biology and medicine. However, the advances are hindered by off-target effects and a paucity in the knowledge of the mechanism of the Cas9 protein. Machine learning models have been proposed for the prediction of Cas9 activity at unintended sites, yet feature engineering plays a major role in the outcome of the predictors. This study evaluates the improvement in the performance of similar predictors upon inclusion of epigenetic and DNA shape feature groups in the conventionally used sequence-based Cas9 target and off-target datasets. The approach involved the utilization of neural networks trained on a diverse range of parameters, allowing us to systematically assess the performance increase for the meticulously designed datasets- (i) sequence only, (ii) sequence and epigenetic features, and (iii) sequence, epigenetic and DNA shape feature datasets. The addition of DNA shape information significantly improved predictive performance, evaluated by Akaike and Bayesian information criteria. The evaluation of individual feature importance by permutation and LIME-based methods also indicates that not only sequence features like mismatches and nucleotide composition, but also base pairing parameters like opening and stretch, that are indicative of distortion in the DNA-RNA hybrid in the presence of mismatches, influence model outcomes.


Assuntos
Sistemas CRISPR-Cas , DNA , Edição de Genes , Aprendizado de Máquina , Redes Neurais de Computação , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/química , Edição de Genes/métodos , Conformação de Ácido Nucleico , Humanos , Teorema de Bayes , Epigênese Genética
2.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662422

RESUMO

Heritability of common eye diseases and ocular traits are relatively high. Here, we develop an automated algorithm to detect genetic relatedness from color fundus photographs (FPs). We estimated the degree of shared ancestry amongst individuals in the UK Biobank using KING software. A convolutional Siamese neural network-based algorithm was trained to output a measure of genetic relatedness using 7224 pairs (3612 related and 3612 unrelated) of FPs. The model achieved high performance for prediction of genetic relatedness; when computed Euclidean distances were used to determine probability of relatedness, the area under the receiver operating characteristic curve (AUROC) for identifying related FPs reached 0.926. We performed external validation of our model using FPs from the LIFE-Adult study and achieved an AUROC of 0.69. An occlusion map indicates that the optic nerve and its surrounding area may be the most predictive of genetic relatedness. We demonstrate that genetic relatedness can be captured from FP features. This approach may be used to uncover novel biomarkers for common ocular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA