RESUMO
In 2017, the Centers for Disease Control and Prevention (CDC) established the Antimicrobial Resistance Laboratory Network to improve domestic detection of multidrug-resistant organisms. CDC and four laboratories evaluated a commercial broth microdilution panel. Antimicrobial susceptibility testing using the Sensititre GN7F (ThermoFisher Scientific, Lenexa, KS) was evaluated by testing 100 CDC and Food and Drug Administration AR Isolate Bank isolates [40 Enterobacterales (ENT), 30 Pseudomonas aeruginosa (PSA), and 30 Acinetobacter baumannii (ACB)]. We assessed multiple amounts of transfer volume (TV) between the inoculum and tubed 11-mL cation-adjusted Mueller-Hinton broth: 1 µL [tribe Proteeae (P-tribe) only] and 10, 30, and 50 µL, resulting in respective CFU per milliter of 1 × 104, 1 × 105, 3 × 105, and 5 × 105. Four TV combinations were analyzed: standard (STD) [1 µL (P-tribe) and 10 µL], enhanced standard (E-STD) [1 µL (P-tribe) and 30 µL], 30 µL, and 50 µL. Essential agreement (EA), categorical agreement, major error (ME), and very major error (VME) were analyzed by organism then TVs. For ENT, the average EA across laboratories was <90% for 7 of 15 ß-lactams using STD and E-STD TVs. As TVs increased, EA increased (>90%), and VMEs decreased. For PSA, EA improved as TVs increased; however, MEs also increased. For ACB, increased TVs provided slight EA improvements; all TVs yielded multiple VMEs and MEs. For ENT and ACB, Minimum inhibitory concentrations (MICs) trended downward using a 1 or 10 µL TV; there were no obvious MIC trends by TV for PSA. The public health and clinical consequences of missing resistance warrant increased TV of 30 µL for the GN7F, particularly for P-tribe, despite being considered "off-label" use.
Assuntos
Acinetobacter baumannii , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Laboratórios , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosaRESUMO
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) producing the Verona integronâencoded metallo-ß-lactamase (VIM) are highly antimicrobial drug-resistant pathogens that are uncommon in the United States. We investigated the source of VIM-CRPA among US medical tourists who underwent bariatric surgery in Tijuana, Mexico. Cases were defined as isolation of VIM-CRPA or CRPA from a patient who had an elective invasive medical procedure in Mexico during January 2018âDecember 2019 and within 45 days before specimen collection. Whole-genome sequencing of isolates was performed. Thirty-eight case-patients were identified in 18 states; 31 were operated on by surgeon 1, most frequently at facility A (27/31 patients). Whole-genome sequencing identified isolates linked to surgeon 1 were closely related and distinct from isolates linked to other surgeons in Tijuana. Facility A closed in March 2019. US patients and providers should acknowledge the risk for colonization or infection after medical tourism with highly drug-resistant pathogens uncommon in the United States.
Assuntos
Farmacorresistência Bacteriana Múltipla , Turismo Médico , Infecções por Pseudomonas , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Carbapenêmicos , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Estados Unidos/epidemiologia , beta-Lactamases/genéticaRESUMO
BACKGROUND: To address high COVID-19 burden in U.S. nursing homes, rapid SARS-CoV-2 antigen tests have been widely distributed in those facilities. However, performance data are lacking, especially in asymptomatic people. OBJECTIVE: To evaluate the performance of SARS-CoV-2 antigen testing when used for facility-wide testing during a nursing home outbreak. DESIGN: A prospective evaluation involving 3 facility-wide rounds of testing where paired respiratory specimens were collected to evaluate the performance of the BinaxNOW antigen test compared with virus culture and real-time reverse transcription polymerase chain reaction (RT-PCR). Early and late infection were defined using changes in RT-PCR cycle threshold values and prior test results. SETTING: A nursing home with an ongoing SARS-CoV-2 outbreak. PARTICIPANTS: 532 paired specimens collected from 234 available residents and staff. MEASUREMENTS: Percentage of positive agreement (PPA) and percentage of negative agreement (PNA) for BinaxNOW compared with RT-PCR and virus culture. RESULTS: BinaxNOW PPA with virus culture, used for detection of replication-competent virus, was 95%. However, the overall PPA of antigen testing with RT-PCR was 69%, and PNA was 98%. When only the first positive test result was analyzed for each participant, PPA of antigen testing with RT-PCR was 82% among 45 symptomatic people and 52% among 343 asymptomatic people. Compared with RT-PCR and virus culture, the BinaxNOW test performed well in early infection (86% and 95%, respectively) and poorly in late infection (51% and no recovered virus, respectively). LIMITATION: Accurate symptom ascertainment was challenging in nursing home residents; test performance may not be representative of testing done by nonlaboratory staff. CONCLUSION: Despite lower positive agreement compared with RT-PCR, antigen test positivity had higher agreement with shedding of replication-competent virus. These results suggest that antigen testing could be a useful tool to rapidly identify contagious people at risk for transmitting SARS-CoV-2 during nascent outbreaks and help reduce COVID-19 burden in nursing homes. PRIMARY FUNDING SOURCE: None.
Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Casas de Saúde , Pandemias , SARS-CoV-2/imunologia , COVID-19/epidemiologia , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Typhoid fever in the United States is acquired primarily through international travel by unvaccinated travelers. There is currently no typhoid vaccine licensed in the United States for use in childrenâ <2 years. METHODS: We reviewed Salmonella enterica serotype Typhi infections reported to the Centers for Disease Control and Prevention (CDC) and antimicrobial-resistance data on Typhi isolates in CDC's National Antimicrobial Resistance Monitoring System from 1999 through 2015. RESULTS: 5131 cases of typhoid fever were diagnosed and 5004 Typhi isolates tested for antimicrobial susceptibility. Among 1992 pediatric typhoid fever patients, 1616 (81%) had traveled internationally within 30 days of illness onset, 1544 (81%) of 1906 were hospitalized (median duration, 6 days; range, 0-50), and none died. Forty percent (799) were <6 years old; 12% wereâ <2 years old. Based on age and travel destination, 1435 (83%) of 1722 pediatric patients were vaccine-eligible; only 68 (5%) of 1361 were known to be vaccinated. Of 2003 isolates tested for antimicrobial susceptibility, 1216 (61%) were fluoroquinolone-nonsusceptible, of which 272 (22%) were also resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (multidrug-resistant [MDR]). All were susceptible to ceftriaxone and azithromycin. MDR and fluoroquinolone-nonsusceptible isolates were more common in children than adults (16% vs 9%, Pâ <â .001, and 61% vs 54%, Pâ <â .001, respectively). Fluoroquinolone nonsusceptibility was more common among travel-associated than domestically acquired cases (70% vs 17%, Pâ <â .001). CONCLUSIONS: Approximately 95% of currently vaccine-eligible pediatric travelers were unvaccinated, and antimicrobial-resistant infections were common. New public health strategies are needed to improve coverage with currently licensed vaccines. Introduction of an effective pretravel typhoid vaccine for childrenâ <2 years could reduce disease burden and prevent drug-resistant infections.
Assuntos
Febre Tifoide , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona/farmacologia , Criança , Pré-Escolar , Humanos , Testes de Sensibilidade Microbiana , Salmonella typhi , Viagem , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Estados Unidos/epidemiologiaRESUMO
Aztreonam-avibactam is a drug combination pending phase 3 clinical trials and is suggested for treatment of severe infections caused by metallo-beta-lactamase (MBL)-producing Enterobacterales by combining ceftazidime-avibactam and aztreonam. Beginning in 2019, four Antibiotic Resistance Laboratory Network regional laboratories offered aztreonam-avibactam susceptibility testing by broth microdilution. For 64 clinical isolates tested, the MIC50 and MIC90 values of aztreonam-avibactam were 0.5/4 µg/ml and 8/4 µg/ml, respectively. Aztreonam-avibactam displayed potent in vitro activity against the MBL-producing Enterobacterales tested.
Assuntos
Aztreonam , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima , Combinação de Medicamentos , Resistência Microbiana a Medicamentos , Humanos , Laboratórios , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Carbapenemase gene-positive (CP) Gram-negative bacilli are of significant clinical and public health concern. Their rapid detection and containment are critical to preventing their spread and additional infections they can cause. To this end, CDC developed the Antibiotic Resistance Laboratory Network (AR Lab Network), in which public health laboratories across all 50 states, several cities, and Puerto Rico characterize clinical isolates of carbapenem-resistant Enterobacterales (CRE), Pseudomonas aeruginosa (CRPA), and Acinetobacter baumannii (CRAB) and conduct colonization screens to detect the presence of mobile carbapenemase genes. In its first 3 years, the AR Lab Network tested 76,887 isolates and 31,001 rectal swab colonization screens. Targeted carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like, blaVIM, or blaIMP) were detected by PCR in 35% of CRE, 2% of CRPA, and <1% of CRAB isolates and 8% of colonization screens tested, respectively. blaKPC and blaVIM were the most common genes in CP-CRE and CP-CRPA isolates, respectively, but regional differences in the frequency of carbapenemase genes detected were apparent. In CRE and CRPA isolates tested for carbapenemase production and the presence of the targeted genes, 97% had concordant results; 3% of CRE and 2% of CRPA isolates were carbapenemase production positive but PCR negative for those genes. Isolates harboring blaNDM showed the highest frequency of resistance across the carbapenems tested, and those harboring blaIMP and blaOXA-48-like genes showed the lowest frequency of carbapenem resistance. The AR Lab Network provides a national snapshot of rare and emerging carbapenemase genes, delivering data to inform public health actions to limit the spread of these antibiotic resistance threats.
Assuntos
Carbapenêmicos , Laboratórios , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Atenção à Saúde , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Detection of carbapenem-resistant Pseudomonas aeruginosa (CRPA) with carbapenemase-producing (CP) genes is critical for preventing transmission. Our objective was to assess whether certain antimicrobial susceptibility testing (AST) profiles can efficiently identify CP-CRPA. We defined CRPA as P. aeruginosa with imipenem or meropenem MICs of ≥8 µg/ml; CP-CRPA was CRPA with CP genes (blaKPC/blaIMP/blaNDM/blaOXA-48/blaVIM). We assessed the sensitivity and specificity of AST profiles to detect CP-CRPA among CRPA isolates collected by CDC's Antibiotic Resistance Laboratory Network (AR Lab Network) and the Emerging Infections Program (EIP) during 2017 to 2019. Three percent (195/6,192) of AR Lab Network CRPA isolates were CP-CRPA. Among CRPA isolates, adding not susceptible (NS) to cefepime or ceftazidime to the definition had 91% sensitivity and 50% specificity for identifying CP-CRPA; adding NS to ceftolozane-tazobactam had 100% sensitivity and 86% specificity. Of 965 EIP CRPA isolates evaluated for CP genes, 7 were identified as CP-CRPA; 6 of the 7 were NS to cefepime and ceftazidime, and all 7 were NS to ceftolozane-tazobactam. Among 4,182 EIP isolates, clinical laboratory AST results were available for 96% of them for cefepime, 80% for ceftazidime, and 4% for ceftolozane-tazobactam. The number of CRPA isolates needed to test (NNT) to identify one CP-CRPA isolate decreased from 138 to 64 if the definition of NS to cefepime or ceftazidime was used and to 7 with NS to ceftolozane-tazobactam. Adding not susceptible to cefepime or ceftazidime to CRPA carbapenemase testing criteria would reduce the NNT by half and can be implemented in most clinical laboratories; adding not susceptible to ceftolozane-tazobactam could be even more predictive once AST for this drug is more widely available.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Compostos Azabicíclicos , Proteínas de Bactérias , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , beta-Lactamases/genéticaRESUMO
BACKGROUND: Aztreonam/avibactam is a combination agent that shows promise in treating infections caused by highly antibiotic-resistant MBL-producing Enterobacterales. This combination can be achieved by combining two FDA-approved drugs: ceftazidime/avibactam and aztreonam. It is unknown whether ceftazidime in the combination ceftazidime/aztreonam/avibactam has a synergistic or antagonistic effect on the in vitro activity of aztreonam/avibactam by significantly increasing or decreasing the MIC. OBJECTIVES: To determine whether increasing ceftazidime concentrations affect the MICs of aztreonam/avibactam alone. METHODS: A custom 8â×â8 chequerboard broth microdilution (BMD) panel was made using a digital dispenser (Hewlett-Packard, Corvallis, OR, USA). The panel included orthogonal 2-fold dilution series of aztreonam and ceftazidime ranging from 0.5 to 64 mg/L. Avibactam concentration was kept constant at 4 mg/L throughout the chequerboard. Thirty-seven Enterobacterales isolates from the CDC & FDA Antibiotic Resistance Isolate Bank or CDC's internal collection with intermediate or resistant interpretations to aztreonam and ceftazidime/avibactam were included for testing. All isolates harboured at least one of the following MBL genes: blaIMP, blaNDM or blaVIM. RESULTS: Regardless of the concentration of ceftazidime, aztreonam/avibactam with ceftazidime MICs for all 37 isolates were within one 2-fold doubling dilution of the aztreonam/avibactam MIC. CONCLUSIONS: Ceftazidime, in the combination ceftazidime/avibactam/aztreonam, did not affect the in vitro activity of aztreonam/avibactam in this sample of isolates. These findings can help assure clinical and public health laboratories that testing of aztreonam/avibactam by BMD can act as a reliable surrogate test when the combination of ceftazidime/avibactam and aztreonam is being considered for treatment of highly antibiotic-resistant MBL-producing Enterobacterales.
Assuntos
Aztreonam , Ceftazidima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , beta-LactamasesRESUMO
The treatment of infections caused by carbapenem-resistant Enterobacterales, especially New Delhi metallo-ß-lactamase (NDM)-producing bacteria, is challenging. Although less common in the United States than some other carbapenemase producers, NDM-producing bacteria are a public health threat due to the limited treatment options available. Here, we report on the antibiotic susceptibility of 275 contemporary NDM-producing Enterobacterales collected from 30 U.S. states through the Centers for Disease Control and Prevention's Antibiotic Resistance Laboratory Network. The aims of the study were to determine the susceptibility of these isolates to 32 currently available antibiotics using reference broth microdilution and to explore the in vitro activity of 3 combination agents that are not yet available. Categorical interpretations were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria. For agents without CLSI criteria, Food and Drug Administration (FDA) interpretive criteria were used. The percentage of susceptible isolates did not exceed 90% for any of the FDA-approved antibiotics tested. The antibiotics with breakpoints that had the highest in vitro activity were tigecycline (86.5% susceptible), eravacycline (66.2% susceptible), and omadacycline (59.6% susceptible); 18.2% of isolates were susceptible to aztreonam. All NDM-producing isolates tested were multidrug resistant, and 116 isolates were extensively drug resistant (42.2%); 207 (75.3%) isolates displayed difficult-to-treat resistance. The difficulty in treating infections caused by NDM-producing Enterobacterales highlights the need for containment and prevention efforts to keep these infections from becoming more common.
Assuntos
Enterobacteriaceae , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Aztreonam-avibactam is a combination antimicrobial agent with activity against carbapenemase-producing Enterobacteriaceae (CPE) with metallo-ß-lactamases (MßLs). Although aztreonam-avibactam is not yet approved by the U.S. Food and Drug Administration (FDA), clinicians can administer this combination by using two FDA-approved drugs: aztreonam and ceftazidime-avibactam. This combination of drugs is recommended by multiple experts for treatment of serious infections caused by MßL-producing CPE. At present, in vitro antimicrobial susceptibility testing (AST) of aztreonam-avibactam is not commercially available; thus, most clinicians receive no laboratory-based guidance that can support consideration of aztreonam-avibactam for serious CPE infections. Here, we report our internal validation for aztreonam-avibactam AST by reference broth microdilution (BMD) according to Clinical and Laboratory Standards Institute (CLSI) guidelines. The validation was performed using custom frozen reference BMD panels prepared in-house at the Centers for Disease Control and Prevention (CDC). In addition, we took this opportunity to evaluate a new panel-making method using a digital dispenser, the Hewlett Packard (HP) D300e. Our studies demonstrate that the performance characteristics of digitally dispensed panels were equivalent to those of conventionally prepared frozen reference BMD panels for a number of drugs, including aztreonam-avibactam. We found the HP D300e digital dispenser to be easy to use and to provide the capacity to prepare complex drug panels. Our findings will help other clinical and public health laboratories implement susceptibility testing for aztreonam-avibactam.
Assuntos
Aztreonam , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Compostos Azabicíclicos , Aztreonam/farmacologia , Ceftazidima , Combinação de Medicamentos , beta-LactamasesRESUMO
Acinetobacter baumannii is a Gram-negative bacillus that can cause severe and difficult-to-treat healthcare-associated infections. A. baumannii can harbor mobile genetic elements carrying genes that produce carbapenemase enzymes, further limiting therapeutic options for infections. In the United States, the Antimicrobial Resistance Laboratory Network (AR Lab Network) conducts sentinel surveillance of carbapenem-resistant Acinetobacter baumannii (CRAB). Participating clinical laboratories sent CRAB isolates to the AR Lab Network for characterization, including antimicrobial susceptibility testing and molecular detection of class A (Klebsiella pneumoniae carbapenemase), class B (Active-on-Imipenem, New Delhi metallo-ß-lactamase, and Verona integron-encoded metallo-ß-lactamase), and class D (Oxacillinase, blaOXA-23-like, blaOXA-24/40-like, blaOXA-48-like, and blaOXA-58-like) carbapenemase genes. During 2017â2020, 6,026 CRAB isolates from 45 states were tested for targeted carbapenemase genes; 1% (64 of 5,481) of CRAB tested for targeted class A and class B genes were positive, but 83% (3,351 of 4,041) of CRAB tested for targeted class D genes were positive. The number of CRAB isolates carrying a class A or B gene increased from 2 of 312 (<1%) tested in 2017 to 26 of 1,708 (2%) tested in 2020. Eighty-three percent (2,355 of 2,846) of CRAB with at least one of the targeted carbapenemase genes and 54% (271 of 500) of CRAB without were categorized as extensively drug resistant; 95% (42 of 44) of isolates carrying more than one targeted gene had difficult-to-treat susceptibility profiles. CRAB isolates carrying targeted carbapenemase genes present an emerging public health threat in the United States, and their rapid detection is crucial to improving patient safety.IMPORTANCEThe Centers for Disease Control and Prevention has classified CRAB as an urgent public health threat. In this paper, we used a collection of >6,000 contemporary clinical isolates to evaluate the phenotypic and genotypic properties of CRAB detected in the United States. We describe the frequency of specific carbapenemase genes detected, antimicrobial susceptibility profiles, and the distribution of CRAB isolates categorized as multidrug resistant, extensively drug-resistant, or difficult to treat. We further discuss the proportion of isolates showing susceptibility to Food and Drug Administration-approved agents. Of note, 84% of CRAB tested harbored at least one class A, B, or D carbapenemase genes targeted for detection and 83% of these carbapenemase gene-positive CRAB were categorized as extensively drug resistant. Fifty-four percent of CRAB isolates without any of these carbapenemase genes detected were still extensively drug-resistant, indicating that infections caused by CRAB are highly resistant and pose a significant risk to patient safety regardless of the presence of one of these carbapenemase genes.
Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Carbapenêmicos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Proteínas de Bactérias/genéticaRESUMO
BACKGROUND: Historically, United States' carbapenem-resistant Enterobacterales (CRE) surveillance and mechanism testing focused on three genera: Escherichia, Klebsiella, and Enterobacter (EsKE); however, other genera can harbour mobile carbapenemases associated with CRE spread. OBJECTIVES: From January through May 2018, we conducted a 10 state evaluation to assess the contribution of less common genera (LCG) to carbapenemase-producing (CP) CRE. METHODS: State public health laboratories (SPHLs) requested participating clinical laboratories submit all Enterobacterales from all specimen sources during the surveillance period that were resistant to any carbapenem (Morganellaceae required resistance to doripenem, ertapenem, or meropenem) or were CP based on phenotypic or genotypic testing at the clinical laboratory. SPHLs performed species identification, phenotypic carbapenemase production testing, and molecular testing for carbapenemases to identify CP-CRE. Isolates were categorized as CP if they demonstrated phenotypic carbapenemase production and ≥1 carbapenemase gene (bla KPC, bla NDM, bla VIM, bla IMP, or bla OXA-48-like) was detected. RESULTS: SPHLs tested 868 CRE isolates, 127 (14.6%) were from eight LCG. Overall, 195 (26.3%) EsKE isolates were CP-CRE, compared with 24 (18.9%) LCG isolates. LCG accounted for 24 (11.0%) of 219 CP-CRE identified. Citrobacter spp. was the most common CP-LCG; the proportion of Citrobacter that were CP (11/42, 26.2%) was similar to the proportion of EsKE that were CP (195/741, 26.3%). Five of 24 (20.8%) CP-LCG had a carbapenemase gene other than bla KPC. CONCLUSIONS: Participating sites would have missed approximately 1 in 10 CP-CRE if isolate submission had been limited to EsKE genera. Expanding mechanism testing to additional genera could improve detection and prevention efforts.
RESUMO
BACKGROUND: To estimate the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adults with underlying conditions, we assessed duration of coronavirus disease 2019 (COVID-19) symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. METHODS: We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7 to 15, 2020 and instead them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared with duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies, and proportions. RESULTS: We enrolled 17 of 39 (44%) eligible residents. Median participant age was 82 years (range, 58-97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR], 8-31 days) from diagnosis; median duration of symptoms was 42 days (IQR, 28-49 days). Of 9 (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8 of 9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12 of 12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. CONCLUSIONS: Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated noninfectivity in this cohort.
RESUMO
OBJECTIVES: Our objectives were to identify Shigella isolates in the United States with decreased susceptibility to azithromycin (DSA) and characterize the genetic mechanisms responsible for this resistance. METHODS: The National Antimicrobial Resistance Monitoring System (NARMS) at the US Centers for Disease Control and Prevention (CDC) collects and conducts broth microdilution antimicrobial susceptibility testing on Shigella to determine minimum inhibitory concentrations (MICs) for up to 15 drugs, including azithromycin. Isolates with decreased susceptibility to azithromycin were subjected to molecular methods (e.g., polymerase chain reaction [PCR], whole-genome sequencing, and plasmid typing/transformation) to identify the genetic mechanisms of resistance. RESULTS: A total of 118 isolates with decreased susceptibility to azithromycin were tested-65 (55%) isolates contained only mphA, 1 (<1%) isolate contained only ermB, and 51 (43%) isolates contained both mechanisms. Seven isolates contained IncFII plasmids with mphA, ermB, or mphA and ermB, whereas one isolate contained an IncB/O plasmid with mphA. One (<1%) isolate that contained neither mphA nor ermB contained mutations in rrlH, rplD, and rplV genes and an insertion in rplV, the functions of which are not yet known. CONCLUSION: Additional studies are needed to understand the effect on treatment outcomes, epidemiology and possible additional mechanisms responsible for the decreased susceptibility of azithromycin in Shigella.