Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 53(1): 91-102, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17196533

RESUMO

Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset.


Assuntos
Movimento/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/análise , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Corantes Fluorescentes , Indicadores e Reagentes , Interneurônios/citologia , Interneurônios/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Medula Espinal/anatomia & histologia , Natação/fisiologia , Cauda/inervação , Cauda/fisiologia , Peixe-Zebra/anatomia & histologia
2.
Curr Opin Neurobiol ; 14(6): 707-14, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15582372

RESUMO

A convergence of advances in optical methods and a better understanding of the genetics of development promise to revolutionize the study of neuronal circuits and their links to behavior. One of the great challenges in systems neurobiology has been to monitor and perturb activity in populations of identified neurons in vivo. Recent work has begun to achieve this goal through a combination of modern imaging methods with genetic labeling and perturbation.


Assuntos
Sistema Nervoso Central/fisiologia , Corantes Fluorescentes , Biologia Molecular/tendências , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Animais , Comportamento Animal/fisiologia , Sistema Nervoso Central/citologia , Microscopia de Fluorescência/métodos , Biologia Molecular/métodos , Rede Nervosa/citologia , Vias Neurais/citologia , Fótons
3.
Dev Biol ; 298(1): 118-31, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16875686

RESUMO

The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin.


Assuntos
Axônios/metabolismo , Mutação , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Sistema Nervoso Central/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Sistema Nervoso Periférico/metabolismo , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Science ; 305(5681): 254-8, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15247482

RESUMO

Neurons in the human central nervous system (CNS) are unable to regenerate, as a result of both an inhibitory environment and their inherent inability to regrow. In contrast, the CNS environment in fish is permissive for growth, yet some neurons still cannot regenerate. Fish thus offer an opportunity to study molecules that might surmount the intrinsic limitations they share with mammals, without the complication of an inhibitory environment. We show by in vivo imaging in zebrafish that post-injury application of cyclic adenosine monophosphate can transform severed CNS neurons into ones that regenerate and restore function, thus overcoming intrinsic limitations to regeneration in a vertebrate.


Assuntos
Axônios/fisiologia , Bucladesina/farmacologia , Regeneração Nervosa , Neurônios/fisiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/citologia , Animais , Axônios/efeitos dos fármacos , Cálcio/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Eletroporação , Reação de Fuga , Corantes Fluorescentes , Interneurônios/fisiologia , Microscopia Confocal , Neurônios/efeitos dos fármacos , Regeneração , Rodaminas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA