Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871371

RESUMO

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Criança , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Transplante Homólogo , Doadores não Relacionados
2.
Pediatr Blood Cancer ; 67(1): e28030, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599480

RESUMO

Chronic granulomatous disease (CGD) is an immune deficiency characterized by defective neutrophil function and increased risk of life-threatening infections. Allogeneic hematopoietic cell transplantation is curative for CGD, and conditioning regimen impacts transplant-related outcomes. We report a single-center prospective study (NCT01821781) of four patients with CGD transplanted using a reduced-intensity conditioning regimen (RIC) containing alemtuzumab, fludarabine, melphalan, and thiotepa. Patients had early immune reconstitution with low incidence of infections. Disease-free survival was 75% at a median of five years after transplant. This RIC regimen presents an alternative approach for transplant of patients with CGD who may not tolerate busulfan-based conditioning.


Assuntos
Alemtuzumab/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Melfalan/administração & dosagem , Tiotepa/administração & dosagem , Condicionamento Pré-Transplante/métodos , Vidarabina/análogos & derivados , Criança , Pré-Escolar , Seguimentos , Doença Granulomatosa Crônica/patologia , Humanos , Lactente , Agonistas Mieloablativos/administração & dosagem , Prognóstico , Estudos Prospectivos , Vidarabina/administração & dosagem
3.
Biol Blood Marrow Transplant ; 25(3): 556-561, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321596

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a therapeutic option for many nonmalignant disorders (NMD) and is curative or prevents disease progression. Reduced-intensity conditioning (RIC) in HSCT for NMD may reduce regimen-related acute toxicities and late complications. Myeloablation is often replaced by immune suppression in RIC regimens to support donor engraftment. The pace of immune reconstitution after immune suppression by RIC regimens is influenced by agents used, donor source, and graft-versus-host disease prophylaxis/treatment. In a multicenter trial (NCT 00920972) of HSCT for NMD, a RIC regimen consisting of alemtuzumab, fludarabine, and melphalan was substituted for myeloablation. Alemtuzumab was administered early (days -21 to -19) to mitigate major lymphodepletion of the incoming graft and the risk of graft rejection. Immune reconstitution and infectious complications were prospectively monitored for 1-year post-HSCT. Seventy-one patients met inclusion criteria for this report and received marrow or peripheral blood stem cell transplants. Immune reconstitution and infections are reported for related donor (RD) and unrelated donor (URD) transplants at 3 time-points (100days, 6 months, and 1 year post-HSCT). Natural killer cell recovery was rapid, and numbers normalized in both cohorts by day +100. Mean CD3, CD4, and CD8 T-lymphocyte numbers normalized by 6 months after RD HSCT and by 1 year in the URD group. CD4 and CD8 T-lymphocyte counts were significantly higher in patients who received RD HSCT at 6 months and at 1 year, respectively, post-HSCT compared with patients who received URD HSCT. The pace of CD19 B-cell recovery was markedly different between RD and URD cohorts. Mean B-cell numbers were normal by day 100 after RD HSCT but took 1 year post-HSCT to normalize in the URD cohort. Despite these differences in immune reconstitution, the timing and nature of infections did not differ between the groups, presumably because of comparable T-lymphocyte recovery. Immune reconstitution occurred at a faster pace than in prior reports using RIC with T-cell depletion. The incidence of infections was similar for both cohorts and occurred most frequently in the first 100days post-HSCT. Viral and fungal infections occurred at a lower incidence in this cohort, with "early" alemtuzumab compared with regimens administering serotherapy in the peritransplantation period. Patients were susceptible to bacterial infections primarily in the first 100days irrespective of donor source and had no increase in mortality from the same. The overall mortality rate from infections was 1.4% at 1 year. Close monitoring and prophylaxis against bacterial infections in the first 100days post-HSCT is necessary but is followed by robust immune reconstitution, especially in the T-cell compartment.


Assuntos
Alemtuzumab/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Reconstituição Imune , Infecções/etiologia , Condicionamento Pré-Transplante/métodos , Alemtuzumab/efeitos adversos , Criança , Feminino , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Depleção Linfocítica , Masculino , Análise de Sobrevida , Doadores não Relacionados
5.
Front Pediatr ; 10: 796994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402356

RESUMO

Hematopoietic cell transplant is a curative therapy for many pediatric patients with high risk acute lymphoblastic leukemia. Its therapeutic mechanism is primarily based on the generation of an alloreactive graft-versus-leukemia effect that can eliminate residual leukemia cells thus preventing relapse. However its efficacy is diminished by the concurrent emergence of harmful graft-versus-host disease disease which affects healthly tissue leading to significant morbidity and mortality. The purpose of this review is to describe the interventions that have been trialed in order to augment the beneficial graft-versus leukemia effect post-hematopoietic cell transplant while limiting the harmful consequences of graft-versus-host disease. This includes many emerging and promising strategies such as ex vivo and in vivo graft manipulation, targeted cell therapies, T-cell engagers and multiple pharmacologic interventions that stimulate specific donor effector cells.

6.
Front Immunol ; 11: 1988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013851

RESUMO

Allogeneic hematopoietic cell transplant (HCT) is curative for pediatric patients with non-malignant hematopoietic disorders, including hemoglobinopathies, bone marrow failure syndromes, and primary immunodeficiencies. Early establishment of donor-derived innate and adaptive immunity following HCT is associated with improved overall survival, lower risk of infections and decreased incidence of graft failure. Immune reconstitution (IR) is impacted by numerous clinical variables including primary disease, donor characteristics, conditioning regimen, and graft versus host disease (GVHD). Recent advancements in HCT have been directed at reducing toxicity of conditioning therapy, expanding donor availability through use of alternative donor sources, and addressing morbidity from GVHD with novel graft manipulation. These novel transplant approaches impact the kinetics of immune recovery, which influence post-transplant outcomes. Here we review immune reconstitution in pediatric patients undergoing HCT for non-malignant disorders. We explore the transplant-associated factors that influence immunologic recovery and the disease-specific associations between IR and transplant outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Fatores Etários , Criança , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/etiologia , Hemoglobinopatias/terapia , Humanos , Doenças da Imunodeficiência Primária/etiologia , Doenças da Imunodeficiência Primária/terapia , Fatores de Risco , Doadores de Tecidos , Condicionamento Pré-Transplante/efeitos adversos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo , Resultado do Tratamento
7.
Exp Hematol ; 88: 42-55, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32652111

RESUMO

Toll-like receptor 2 (TLR2) expression is increased on hematopoietic stem and progenitor cells (HSPCs) of patients with myelodysplastic syndromes (MDS), and enhanced TLR2 signaling is thought to contribute to MDS pathogenesis. Notably, TLR2 heterodimerizes with TLR1 or TLR6, and while high TLR2 is associated with lower-risk disease, high TLR6, but not TLR1, correlates with higher-risk disease. This raises the possibility of heterodimer-specific effects of TLR2 signaling in MDS, and in the work described here, we tested the effects of specific modulation of TLR1/2 versus TLR2/6 signaling on premalignant HSPCs. Indeed, chronic stimulation of TLR2/6, but not TLR1/2, accelerates leukemic transformation in the NHD13 mouse model of MDS, and conversely, loss of TLR6, but not TLR1, slows this process. TLR2/6 stimulation expands premalignant HSPCs, and chimeric mouse studies revealed that cell-autonomous signaling contributes to this expansion. Finally, TLR2/6 stimulation is associated with an enrichment of Myc and mTORC1 activities. While Myc inhibition partially suppressed the TLR2/6 agonist-mediated expansion of premalignant HSPCs, inhibition of mTORC1 exacerbated it, suggesting that these pathways play opposite roles in regulating the effects of TLR2/6 ligation on HSPCs. Together, these data reveal heterodimer-specific effects of TLR2 signaling on premalignant HSPCs, with TLR2/6 signaling promoting their expansion and leukemic transformation.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Síndromes Mielodisplásicas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/patologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/genética , Fatores de Transcrição/genética
8.
Front Immunol ; 7: 390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27733853

RESUMO

Toll-like receptors (TLRs) are a family of pattern recognition receptors that shape the innate immune system by identifying pathogen-associated molecular patterns and host-derived damage-associated molecular patterns. TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells, effector immune cell populations, and endothelial cells. In addition to their well-known role in the innate immune response to acute infection or injury, accumulating evidence supports a role for TLRs in the development of hematopoietic and other malignancies. Several hematopoietic disorders, including lymphoproliferative disorders and myelodysplastic syndromes, which possess a high risk of transformation to leukemia, have been linked to aberrant TLR signaling. Furthermore, activation of TLRs leads to the induction of a number of proinflammatory cytokines and chemokines, which can promote tumorigenesis by driving cell proliferation and migration and providing a favorable microenvironment for tumor cells. Beyond hematopoietic malignancies, the upregulation of a number of TLRs has been linked to promoting tumor cell survival, proliferation, and metastasis in a variety of cancers, including those of the colon, breast, and lung. This review focuses on the contribution of TLRs to hematopoietic malignancies, highlighting the known direct and indirect effects of TLR signaling on tumor cells and their microenvironment. In addition, the utility of TLR agonists and antagonists as potential therapeutics in the treatment of hematopoietic malignancies is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA