Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 343, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102637

RESUMO

In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Células Endoteliais/metabolismo , Esferoides Celulares/patologia , Matriz Extracelular/metabolismo , Organoides/metabolismo , Microambiente Tumoral
2.
FEMS Microbiol Lett ; 250(2): 175-84, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16099605

RESUMO

Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.


Assuntos
Bacillus anthracis/genética , Bacillus cereus/genética , Bacillus subtilis/genética , Bacillus thuringiensis/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Parede Celular/genética , Genômica , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Transdução de Sinais/genética , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA