Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Immunol ; 322: 34-40, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28992949

RESUMO

In chickens, B cells develop in the bursa of Fabricius, a unique organ for B cell development. Most B cells will die within the bursa, mirroring cell losses seen in mammalian bone marrow as central tolerance is enforced at the transition to mature cells. B cell responses are shaped by a complex interplay of signals. Signals in addition to BCR that impact central tolerance have recently been described. We have been interested in chB6, a novel alloantigen on B cells in the chicken. chB6 is found in close proximity to the BCR and can trigger apoptosis after cross-linking by antibody. chB6 has two Ig domains, placing it within the CD2/SLAM family of molecules, but its cytoplasmic domain is unique. We have used a site-specific mutagenesis approach to show that an SH3 binding site in chB6 is required for the induction of apoptosis, suggesting parallels to CD2 signaling.


Assuntos
Linfócitos B/imunologia , Galinhas/imunologia , Domínios de Imunoglobulina/imunologia , Isoantígenos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Domínios de Homologia de src/imunologia , Animais , Apoptose/imunologia , Linfócitos B/citologia , Sítios de Ligação/imunologia , Linhagem Celular , Transdução de Sinais/imunologia
2.
RSC Adv ; 13(35): 24309-24318, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37583664

RESUMO

The aim of this study was to develop biotinylated chitosan (Bio-Chi) decorated multi-walled carbon nanotubes (MWCNTs) for breast cancer therapy with the tyrosine kinase inhibitor, neratinib (NT). For achieving such a purpose, carboxylic acid functionalized multiwalled carbon nanotubes (c-MWCNTs) were initially decorated non-covalently with biotin-chitosan (Bio-Chi) coating for achieving a dual targeting mode; pH-dependent release with chitosan and biotin-receptor mediated active targeting with biotin. Afterwards, Bio-Chi decorated c-MWCNTs were loaded with the tyrosine kinase inhibitor, neratinib (NT). The formulation was then characterized by dynamic light scattering, FTIR and EDX. The drug loading efficiency was estimated to be 95.6 ± 1.2%. In vitro drug release studies revealed a pH-dependent release of NT from Bio-Chi decorated c-MWCNTs, with a higher drug release under acidic pH conditions. Sulforhodamine B (SRB) cytotoxicity assay of different NT formulations disclosed dose-dependent cytotoxicities against SkBr3 cell line, with a superior cytotoxicity observed with NT-loaded Bio-Chi-coated c-MWCNTs, compared to either free NT or NT-loaded naked c-MWCNTs. The IC50 values for free NT, NT-loaded c-MWCNTs and NT-loaded Bio-Chi-coated c-MWCNTs were 548.43 ± 23.1 µg mL-1, 319.55 ± 17.9 µg mL-1, and 257.75 ± 24.5 µg mL-1, respectively. Interestingly, competitive cellular uptake studies revealed that surface decoration of drug-loaded c-MWCNTs with Bio-Chi permitted an enhanced uptake of c-MWCNTs by breast cancer cells, presumably, via biotin receptors-mediated endocytosis. To sum up, Bio-Chi-decorated c-MWCNTs might be a promising delivery vehicle for mediating cell-specific drug delivery to breast cancer cells.

3.
Curr Drug Deliv ; 19(3): 317-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34288838

RESUMO

Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic) that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels). Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying Drug Delivery Systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.


Assuntos
Hiperglicemia , Nanopartículas , Administração Oral , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Humanos , Insulina , Micelas , Nanopartículas/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA