Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 583(7816): 385-390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669694

RESUMO

High-speed actuation of laser frequency1 is critical in applications using lasers and frequency combs2,3, and is a prerequisite for phase locking, frequency stabilization and stability transfer among optical carriers. For example, high-bandwidth feedback control of frequency combs is used in optical-frequency synthesis4, frequency division5 and optical clocks6. Soliton microcombs7,8 have emerged as chip-scale frequency comb sources, and have been used in system-level demonstrations9,10. Yet integrated microcombs using thermal heaters have limited actuation bandwidths11,12 of up to 10 kilohertz. Consequently, megahertz-bandwidth actuation and locking of microcombs have only been achieved with off-chip bulk component modulators. Here we demonstrate high-speed soliton microcomb actuation using integrated piezoelectric components13. By monolithically integrating AlN actuators14 on ultralow-loss Si3N4 photonic circuits15, we demonstrate voltage-controlled soliton initiation, tuning and stabilization with megahertz bandwidth. The AlN actuators use 300 nanowatts of power and feature bidirectional tuning, high linearity and low hysteresis. They exhibit a flat actuation response up to 1 megahertz-substantially exceeding bulk piezo tuning bandwidth-that is extendable to higher frequencies by overcoming coupling to acoustic contour modes of the chip. Via synchronous tuning of the laser and the microresonator, we exploit this ability to frequency-shift the optical comb spectrum (that is, to change the comb's carrier-envelope offset frequency) and make excursions beyond the soliton existence range. This enables a massively parallel frequency-modulated engine16,17 for lidar (light detection and ranging), with increased frequency excursion, lower power and elimination of channel distortions resulting from the soliton Raman self-frequency shift. Moreover, by modulating at a rate matching the frequency of high-overtone bulk acoustic resonances18, resonant build-up of bulk acoustic energy allows a 14-fold reduction of the required driving voltage, making it compatible with CMOS (complementary metal-oxide-semiconductor) electronics. Our approach endows soliton microcombs with integrated, ultralow-power and fast actuation, expanding the repertoire of technological applications of microcombs.

2.
Nat Mater ; 21(9): 1024-1028, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35970964

RESUMO

Electron spins in van der Waals materials are playing a crucial role in recent advances in condensed-matter physics and spintronics. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report optical polarization and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively charged boron vacancy ([Formula: see text]) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. We observe the Rabi frequency of nuclear spins at the excited-state level anti-crossing of [Formula: see text] defects to be 350 times larger than that of an isolated nucleus, and demonstrate fast coherent control of nuclear spins. Further, we detect strong electron-mediated nuclear-nuclear spin coupling that is five orders of magnitude larger than the direct nuclear-spin dipolar coupling, enabling multi-qubit operations. Our work opens new avenues for the manipulation of nuclear spins in van der Waals materials for quantum information science and technology.

3.
Opt Lett ; 47(13): 3347-3350, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776622

RESUMO

Generation of a local magnetic field at the nanoscale is desirable for many applications such as spin-qubit-based quantum memories. However, this is a challenge due to the slow decay of static magnetic fields. Here, we demonstrate a photonic spin density (PSD)-induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond. This locally induced magnetic field is a result of coherent interaction between the optical excitation and the NV centers. We demonstrate an optically induced spin rotation on the Bloch sphere exceeding 10 degrees which has potential applications in all-optical coherent control of spin qubits.

4.
Nano Lett ; 21(18): 7708-7714, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34473524

RESUMO

The recently discovered spin defects in hexagonal boron nitride (hBN), a layered van der Waals material, have great potential in quantum sensing. However, the photoluminescence and the contrast of the optically detected magnetic resonance (ODMR) of hBN spin defects are relatively low so far, which limits their sensitivity. Here we report a record-high ODMR contrast of 46% at room temperature and simultaneous enhancement of the photoluminescence of hBN spin defects by up to 17-fold by the surface plasmon of a gold film microwave waveguide. Our results are obtained with shallow boron vacancy spin defects in hBN nanosheets created by low-energy He+ ion implantation and a gold film microwave waveguide fabricated by photolithography. We also explore the effects of microwave and laser powers on the ODMR and improve the sensitivity of hBN spin defects for magnetic field detection. Our results support the promising potential of hBN spin defects for nanoscale quantum sensing.

5.
Phys Rev Lett ; 124(1): 013902, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976733

RESUMO

Silicon nitride (Si_{3}N_{4}) has emerged as a promising material for integrated nonlinear photonics and has been used for broadband soliton microcombs and low-pulse-energy supercontinuum generation. Therefore, understanding all nonlinear optical properties of Si_{3}N_{4} is important. So far, only stimulated Brillouin scattering (SBS) has not yet been reported. Here we observe, for the first time, backward SBS in fully cladded Si_{3}N_{4} waveguides. The Brillouin gain spectrum exhibits an unusual multipeak structure resulting from hybridization with high-overtone bulk acoustic resonances of the silica cladding. The reported intrinsic Si_{3}N_{4} Brillouin gain at 25 GHz is estimated as 4×10^{-13} m/W. Moreover, the magnitude of the Si_{3}N_{4} photoelastic constant is estimated as |p_{12}|=0.047±0.004, which is nearly 6 times smaller than for silica. Since SBS imposes an optical power limitation for waveguides, our results explain the capability of Si_{3}N_{4} to handle high optical power, central for integrated nonlinear photonics.

6.
Nano Lett ; 19(10): 7021-7027, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498998

RESUMO

Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 µm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 µm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.

7.
Nano Lett ; 13(6): 2760-5, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23706144

RESUMO

Optomechanical systems have enabled wide-band optical frequency conversion and multichannel all-optical radio frequency amplification. Realization of an on-chip silicon communication platform is limited by photodetectors needed to convert optical information to electrical signals for further signal processing. In this paper we present a coupled silicon microresonator, which converts near-IR optical intensity modulation at 174.2 MHz and 1.198 GHz into motional electrical current. This device emulates a photodetector which detects intensity modulation of continuous wave laser light in the full-width-at-half-maximum bandwidth of the mechanical resonance. The resonant principle of operation eliminates dark current challenges associated with convetional photodetectors. While the results presented here constitute a purely classical demonstration, the device can also potentially be extended to the quantum regime to realize a photon-phonon translator.

8.
Nat Commun ; 15(1): 3134, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605067

RESUMO

Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale integration of these systems has been challenged by stringent requirements on laser coherence, frequency agility, and the necessity for optical amplifiers. Here, we demonstrate a photonic-electronic LiDAR source composed of a micro-electronic-based high-voltage arbitrary waveform generator, a hybrid photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier. Importantly, all systems are realized in a wafer-scale manufacturing-compatible process comprising III-V semiconductors, silicon nitride photonic integrated circuits, and 130-nm SiGe bipolar complementary metal-oxide-semiconductor (CMOS) technology. We conducted ranging experiments at a 10-meter distance with a precision level of 10 cm and a 50 kHz acquisition rate. The laser source is turnkey and linearization-free, and it can be seamlessly integrated with existing focal plane and optical phased array LiDAR approaches.

9.
Opt Express ; 21(23): 27780-8, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514293

RESUMO

Finite photon lifetimes for light fields in an opto-mechanical cavity impose a bandwidth limit on displacement sensing at mechanical resonance frequencies beyond the loaded cavity photon decay rate. Opto-mechanical modulation efficiency can be enhanced via multi-GHz transduction techniques such as piezo-opto-mechanics at the cost of on-chip integration. In this paper, we present a novel high bandwidth displacement sense scheme employing Rayleigh scattering in photonic resonators. Using this technique in conjunction with on-chip electrostatic drive in silicon enables efficient modulation at frequencies up to 9.1GHz. Being independent of the drive mechanism, this scheme could readily be extended to piezo-opto-mechanical and all optical transduced systems.

10.
Microsyst Nanoeng ; 9: 52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152864

RESUMO

Considering the evolution of rotation sensing and timing applications realized in micro-electro-mechanical systems (MEMS), flexural mode resonant shapes are outperformed by bulk acoustic wave (BAW) counterparts by achieving higher frequencies with both electrostatic and piezoelectric transduction. Within the 1-30 MHz range, which hosts BAW gyroscopes and timing references, piezoelectric and electrostatic MEMS have similar transduction efficiency. Although, when designed intelligently, electrostatic transduction allows self-alignment between electrodes and the resonator for various BAW modes, misalignment is inevitable regarding piezoelectric transduction of BAW modes that require electrode patterning. In this paper transverse piezoelectric actuation of [011] oriented single crystal lead magnesium niobate-lead titanate (PMN-PT) thin film disks are shown to excite the tangential mode and family of elliptical compound resonant modes, utilizing a self-aligned and unpatterned electrode that spans the entire disk surface. The resonant mode coupling is achieved by employing a unique property of [011] PMN-PT, where the in-plane piezoelectric coefficients have opposite signs. Fabricating 1-port disk transducers, RF reflection measurements are performed that demonstrate the compound mode family shapes in the 1-30 MHz range. Independent verification of mode transduction is achieved using in-plane displacement measurements with Polytec's laser Doppler vibrometer (LDV). While the tangential mode achieves a 40o/s dithering rate at 335 kHz resonant frequency, the n = 2 wine-glass mode achieves 11.46 nm tip displacement at 8.42 MHz resonant frequency on a radius of 60 µm disk resonator in air. A single electrode resonator that can excite both tangential and wine-glass modes with such metrics lays the foundation for a BAW MEMS gyroscope with a built-in primary calibration stage.

11.
Nat Commun ; 13(1): 3522, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725718

RESUMO

Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015 Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4 photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

12.
Opt Express ; 19(10): 9020-6, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643155

RESUMO

Cavity optomechanical systems offer one of the most sensitive methods for detecting mechanical motion using shifts in the optical resonance frequency of the optomechanical resonator. Presently, these systems are used for measuring mechanical thermal noise displacement or mechanical motion actuated by optical forces. Electrostatic capacitive actuation and detection have been shown previously for silicon micro electro mechanical resonators for application in filters and oscillators. Here, we demonstrate monolithic integration of electrostatic capacitive actuation with optical sensing using silicon optomechanical disk resonators and waveguides. The electrically excited mechanical motion is observed as an optical intensity modulation when the input electrical signal is at a frequency of 235 MHz corresponding to the radial vibrational mode of the silicon microdisk.

13.
Opt Express ; 19(24): 24522-9, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109479

RESUMO

Cavity opto-mechanics enabled radiation pressure (RP) driven oscillators shown in the past offer an all optical Radio Frequency (RF) source without the need for external electrical feedback. However these oscillators require external tapered fiber or prism coupling and non-standard fabrication processes. In this work, we present a CMOS compatible fabrication process to design high optical quality factor opto-mechanical resonators in silicon nitride. The ring resonators designed in this process demonstrate low phase noise RP driven oscillations. Using integrated grating couplers and waveguide to couple light to the micro-resonator eliminates 1/f(3) and other higher order phase noise slopes at close-to-carrier frequencies present in previous demonstrations. We present an RP driven opto-mechanical oscillator (OMO) operating at 41.97 MHz with a signal power of -11 dBm and phase noise of -85 dBc/Hz at 1 kHz offset with only 1/f(2) noise down to 10 Hz offset from carrier.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Dispositivos Ópticos , Oscilometria/instrumentação , Compostos de Silício/química , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Ondas de Rádio
14.
Nano Lett ; 10(4): 1234-7, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20180594

RESUMO

This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.


Assuntos
Nanotecnologia/instrumentação , Micro-Ondas , Teoria Quântica , Silício/química
15.
Opt Express ; 18(4): 3850-7, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389395

RESUMO

We demonstrate a silicon photonic platform using thin buried oxide silicon-on-insulator (SOI) substrates using localized substrate removal. We show high confinement silicon strip waveguides, micro-ring resonators and nanotapers using this technology. Propagation losses for the waveguides using the cutback method are 3.88 dB/cm for the quasi-TE mode and 5.06 dB/cm for the quasi-TM mode. Ring resonators with a loaded quality factor (Q) of 46,500 for the quasi-TM mode and intrinsic Q of 148,000 for the quasi-TE mode have been obtained. This process will enable the integration of photonic structures with thin buried oxide SOI based electronics.


Assuntos
Nanotecnologia/instrumentação , Óxidos/química , Fotometria/instrumentação , Silício/química , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
16.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(11): 2454-2460, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32746177

RESUMO

We have designed, fabricated, and characterized magnetostatic wave (MSW) resonators on a chip. The resonators are fabricated by patterning single-crystal yttrium iron garnet (YIG) film on a gadolinium gallium garnet (GGG) substrate and excited by loop-inductor transducers. We achieved this technology breakthrough by developing a YIG film etching process and fabricating thick aluminum coplanar waveguide (CPW) inductor loop around each resonator to individually address and excite MSWs. At 4.77 GHz, the 0.68-mm2 resonator achieves a quality factor ( with a bias field of 987 Oe. We also demonstrate YIG resonator tuning by more than one octave from 3.63 to 7.63 GHz by applying an in-plane external magnetic field. The measured quality factor of the resonator is consistently over 3000 above 4 GHz. The micromachining technology enables the fabrication of multiple single- and two-port YIG resonators on the same chip with all resonators demonstrating octave tunability and high Q .

17.
Nat Commun ; 11(1): 3073, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555165

RESUMO

Integrated photonic devices based on Si3N4 waveguides allow for the exploitation of nonlinear frequency conversion, exhibit low propagation loss, and have led to advances in compact atomic clocks, ultrafast ranging, and spectroscopy. Yet, the lack of Pockels effect presents a major challenge to achieve high-speed modulation of Si3N4. Here, microwave-frequency acousto-optic modulation is realized by exciting high-overtone bulk acoustic wave resonances (HBAR) in the photonic stack. Although HBAR is ubiquitously used in modern communication and superconducting circuits, this is the first time it has been incorporated on a photonic integrated chip. The tight vertical acoustic confinement releases the lateral design of freedom, and enables negligible cross-talk and preserving low optical loss. This hybrid HBAR nanophotonic platform can find immediate applications in topological photonics with synthetic dimensions, compact opto-electronic oscillators, and microwave-to-optical converters. As an application, a Si3N4-based optical isolator is demonstrated by spatiotemporal modulation, with over 17 dB isolation achieved.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29505414

RESUMO

This paper reports on a general analytical expression for the motional resistance ( ) of an arbitrary mode in a piezoelectric microelectromechanical system resonator with parallel plate electrode geometry. After applying simplifying assumptions and using analytical modes shapes, expressions for the of modes with out-of-plane flexure as the primary displacement are presented. These modes include free-free transverse beam flexure (TBF), unclamped disk flexure resonators (DFRs), and antisymmetric Lamb modes. For verification, is extracted from resonators fabricated in a lead zirconate titanate on silicon process. Predicted of TBF and DFR modes is validated using on-wafer extracted constants, analytical modal properties, and independently measured material properties.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29856715

RESUMO

This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.

20.
Artigo em Inglês | MEDLINE | ID: mdl-18276576

RESUMO

We propose the optimal design for "internal dielectric transduction" of longitudinal bulk mode resonators. This transduction increases in efficiency as the dielectric thickness approaches half the acoustic wavelength. With dielectric films at positions of maximum strain (minimum displacement) in the resonator, 60 GHz resonators are proposed with 50 Omega motional impedance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA